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Abstract
Background: Alterations in brain-derived neurotrophic factor (BDNF) gene expression contribute
to serious pathologies such as depression, epilepsy, cancer, Alzheimer's, Huntington and
Parkinson's disease. Therefore, exploring the mechanisms of BDNF regulation represents a great
clinical importance. Studying BDNF expression remains difficult due to its multiple neural activity-
dependent and tissue-specific promoters. Thus, microarray data could provide insight into the
regulation of this complex gene. Conventional microarray co-expression analysis is usually carried
out by merging the datasets or by confirming the re-occurrence of significant correlations across
datasets. However, co-expression patterns can be different under various conditions that are
represented by subsets in a dataset. Therefore, assessing co-expression by measuring correlation
coefficient across merged samples of a dataset or by merging datasets might not capture all
correlation patterns.

Results: In our study, we performed meta-coexpression analysis of publicly available microarray
data using BDNF as a "guide-gene" introducing a "subset" approach. The key steps of the analysis
included: dividing datasets into subsets with biologically meaningful sample content (e.g. tissue,
gender or disease state subsets); analyzing co-expression with the BDNF gene in each subset
separately; and confirming co- expression links across subsets. Finally, we analyzed conservation in
co-expression with BDNF between human, mouse and rat, and sought for conserved over-
represented TFBSs in BDNF and BDNF-correlated genes. Correlated genes discovered in this study
regulate nervous system development, and are associated with various types of cancer and
neurological disorders. Also, several transcription factor identified here have been reported to
regulate BDNF expression in vitro and in vivo.

Conclusion: The study demonstrates the potential of the "subset" approach in co-expression
conservation analysis for studying the regulation of single genes and proposes novel regulators of
BDNF gene expression.
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Background
The accumulation of genome-wide gene expression data
has enabled biologists to investigate gene regulatory
mechanisms using system biology approaches. Recent
developments in microarray technologies and bioinfor-
matics have driven the progress of this field [1]. Moreover,
publicly available microarray data provide information
on human genome-wide gene expression under various
experimental conditions, which for most researchers
would be difficult to access otherwise.

BDNF (brain-derived neurotrophic factor) plays an
important role in the development of the vertebrates'
nervous system [2]. BDNF supports survival and differen-
tiation of embryonic neurons and controls various neural
processes in adulthood, including memory and learning
[3], depression [4], and drug addiction [5]. Alterations in
BDNF expression can contribute to serious pathologies
such as epilepsy, Huntington, Alzheimer's, and Parkin-
son's disease [6]. Alteration in BDNF expression is associ-
ated with unfavorable prognosis in neuroblastoma [7],
myeloma [8], hepatocellular carcinoma [9] and other
tumors [10]. Apart from brain, expression of alternative
BDNF transcripts has been detected in a variety of tissues
(such as heart, muscle, testis, thymus, lung, etc.) [11,12].
Numerous studies have been conducted to unravel the
regulation of BDNF expression in rodents and human.
Data on the structure of human [11] and rodent
[12]BDNF gene have been recently updated. Nevertheless,
little is known about the regulation of human BDNF gene
expression in vivo. Unraveling the regulation of BDNF
expression remains difficult due to its multiple activity-
dependent and tissue-specific promoters. Thus, analysis of
the gene expression under various experimental condi-
tions using microarray data could provide insight into the
regulation of this complex gene.

Meta-coexpression analysis uses multiple experiments to
identify more reliable sets of genes than would be found
using a single data set. The rationale behind meta-coex-
pression analysis is that co-regulated genes should display
similar expression patterns across various conditions.
Moreover, such analysis may benefit from a vast represen-
tation of tissues and conditions [13]. A yeast study
showed that the ability to correctly identify co-regulated
genes in co-expression analysis is strongly dependent on
the number of microarray experiments used [14]. Another
study that examined 60 human microarray datasets for co-
expressed gene pairs reports that gene ontology (GO)
score for gene pairs increases steadily with the number of
confirmed links compared to the pairs confirmed by only
a single dataset [15]. Several studies have successfully
applied meta-analysis approach to get important insights
into various biological processes. For instance, microarray
meta-analysis of aging and cellular senescence led to the

observation that the expression pattern of cellular senes-
cence was similar to that of aging in mice, but not in
humans [16]. Data from a variety of laboratories was inte-
grated to identify a common host transcriptional response
to pathogens [17]. Also, meta-coexpression studies have
displayed their efficiency to predict functional relation-
ships between genes [18]. However, co-expression alone
does not necessarily imply that genes are co-regulated.
Thus, analysis of evolutionary conservation of co-expres-
sion coupled with the search for over-represented motifs
in the promoters of co-expressed genes is a powerful crite-
rion to identify genes that are co-regulated from a set of
co-expressed genes [19,20].

In co-expression analysis, similarity of gene expression
profiles is measured using correlation coefficients (CC) or
other distance measures. If the correlation between two
genes is above a given threshold, then the genes can be
considered as «co-expressed» [1]. Co-expression analysis
using a «guide-gene» approach involves measuring CC
between pre-selected gene(s) and the rest of the genes in a
dataset.

It is a common practice in meta-coexpression studies to
assess co-expression by calculating the gene pair correla-
tions after merging the datasets [20] or by confirming the
re-occurrence of significant correlations across datasets
[15]. However, it has been shown recently that genes can
reveal differential co-expression patterns across subsets in
the same dataset (e.g. gene pairs that are correlated in nor-
mal tissue might not be correlated in cancerous tissue or
might be even anti-correlated) [21]. Therefore, assessing
co-expression by measuring CC across merged samples of
a dataset or by merging datasets may create correlation
patterns that could not be captured using the CC measure-
ment.

In this study, we performed co-expression analysis of pub-
licly available microarray data using BDNF as a "guide-
gene". We inferred BDNF gene co-expression links that
were conserved between human and rodents using a
novel "subset" approach. Then, we discovered new puta-
tive regulatory elements in human BDNF and in BDNF-
correlated genes, and proposed potential regulators of
BDNF gene expression.

Results
We analyzed 299 subsets derived from the total of 80
human, mouse and rat microarray datasets. In order to
avoid spurious results that could arise from high-through-
put microarray analysis methods, we applied successive
filtering of genes. Then, we divided datasets into subsets
with biologically meaningful sample content (e.g. tissue,
gender or disease state subsets), analyzed co-expression
with BDNF across samples separately in each subset and
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confirmed the links across subsets. Finally, we analyzed
conservation in co-expression between human, mouse
and rat, and sought for conserved TFBSs in BDNF and
BDNF-correlated genes (Figure 1).

Data filtering
Gene Expression Omnibus (GEO) from NCBI and
ArrayExpress from EBI are the largest public peer reviewed
microarray repositories, each containing about 8000
experiments. In order to avoid inaccuracies arising from
measuring expression correlation across different microar-
ray platforms [13] we used only Affymetrix GeneChips
platforms for the analysis. Since ArrayExpress imports
Affymetrix experiments from GEO http://www.ebi.ac.uk/
microarray/doc/help/GEO_data.html, we used only GEO
database to retrieve datasets.

A study examining the relationship between the number
of analyzed microarray experiments and the reliability of
the results reported that the accuracy of the analysis pla-
teaus at between 50 and 100 experiments [14]. Another
study demonstrated how the large amount of microarray
data can be exploited to increase the reliability of infer-
ences about gene functions. Links that were confirmed
three or more times between different experiments had
significantly higher GO term overlaps than those seen
only once or twice (p < 10-15) [15]. Therefore, we per-
formed meta-coexpression analysis using multiple experi-
ments to increases the accuracy of the prediction of the co-
expression links.

Since BDNF served as a guide-gene for our microarray
study, qualitative and quantitative criteria were applied
for selection of the experiments with respect to BDNF
probe set presence on the platform [see Additional file 1:
BDNF probe sets], BDNF signal quality and expression
levels. In addition, non-specific filtering [19] was per-
formed to eliminate the noise (see Methods/Microarray
datasets). Consequently, 80 human, mouse and rat micro-
array experiments (datasets) from Gene Expression Omni-
bus (GEO) database met the selection criteria. Each
dataset was split into subsets according to the annotation
file included in the experiment [see Additional file 2:
Microarray datasets and Additional file 3: Subsets]. In
summary, 299 subsets were obtained from 38 human, 24
mouse and 18 rat datasets. From 38 human datasets, 8
were related to neurological diseases (epilepsy, Hunting-
ton's, Alzheimer's, aging, encephalitis, glioma and schizo-
phrenia) and contained samples from human brain;
another 9 datasets contained samples from human "nor-
mal" (non-diseased) tissues (non-neural, such as blood,
skin, lung, and human brain tissues); 12 datasets had
samples from cancerous tissues of various origins (lung,
prostate, kidney, breast and ovarian cancer). The rest 9
datasets contained samples from diseased non-neural tis-
sues (HIV infection, smoking, stress, UV radiation etc.).

Out of 24 mouse datasets, 5 datasets were related to neu-
rological diseases (brain trauma, spinal cord injury,
amyotrophic lateral sclerosis, and aging); 15 datasets con-
tained normal tissue samples (neural and peripheral tis-
sues); 1 dataset contained lung cancer samples; 3 datasets
were related to non-neural tissues' diseases (muscle dys-
trophy, cardiac hypertrophy and asthma). Among 18 rat
datasets, 11 datasets were related to neurological diseases
(spinal cord injury, addiction, epilepsy, aging, ischemia
etc), 5 datasets were with "normal tissue samples" compo-
sition and 2 datasets examined heart diseases [see Addi-
tional file 2: Microarray datasets].

According to Elo and colleagues [22] the reproducibility
of the analysis of eight samples approaches 55%. Selecting
subsets with more than eight samples for the analysis
could increase the reproducibility of the experiment how-
ever reducing the coverage, since subsets with lower
number of samples would be excluded. Thus, we selected
subsets with a minimum of eight samples for the analysis,
in order to achieve satisfactory reproducibility and cover-
age. The expression information for human, mouse and
rat genes obtained from GEO database, information
about BDNF probe names used for each dataset, informa-
tion about subsets derived from each experiment, and
data on correlation of expression between BDNF and
other genes for each microarray subset has been made
available online and can be accessed using the following
link: http://www.bio.lmu.de/~pavlidis/bmc/bdnf.

Differential expression of BDNF across subsets
Since the study was based on analyzing subsets defined by
experimental conditions (gender, age, disease state etc) it
was of biological interest to examine if BDNF is differen-
tially expressed across subsets within a dataset. We used
Kruskal-Wallis test [23] to measure differential expres-
sion. The results of this analysis are given in the Addi-
tional files 4, 5 and 6: Differential expression of the BDNF
gene in human, mouse and rat datasets.

Co-expression analysis
Since the expression of BDNF alternative transcripts is tis-
sue-specific and responds to the variety of stimuli, seeking
for correlated genes in each subset separately could help
to reveal condition-specific co-expression. The term "sub-
set" in this case must be understood as "a set of samples
under the same condition".

We derived 119 human, 73 mouse and 107 rat subsets
from the corresponding datasets. Pearson correlation
coefficient (PCC) was chosen as a similarity measure since
it is one of the most commonly used, with many publica-
tions describing analysis of Affymetrix platforms
[13,24,25]. PCC between BDNF and other genes' probe
sets was measured across samples for each subset sepa-
rately. From each subset, probe sets with PCC r > 0.6 were
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Microarray data analysis flowchartFigure 1
Microarray data analysis flowchart. Altogether, 80 human, mouse and rat Affymetrix datasets were analyzed (dataset 
selection criteria: > 16 samples per dataset; BDNF detection call PRESENT in more than 70% of the samples). Data was sub-
jected to non-specific filtering (missing values and 2-fold change filtering). Thereafter, datasets were divided into 299 corre-
sponding subsets. Co-expression analysis in human, mouse and rat subsets allowed the detection of genes that co-expressed 
with BDNF in more than 3 subsets (~1000 genes for each species). As a result of co-expression conservation analysis, 84 genes 
were found to be correlated with BDNF in all three species. Discovery of over-represented motifs in the regulatory regions of 
these genes and in BDNF suggested novel regulators of BDNF gene expression.

Download Affymetrix microarray datasets:

Human, mouse and rat from GEO

~ 30 000 probe sets per platform

Dividing datasets into subsets

Co−expression analysis 

Pearson correlation coefficient − resampling

~ 9 000 BDNF−correlated genes per species

Co−expression link confirmation

BDNF−correlated 3+ genes

~ 2400 in human

~ 1800 in mouse

~ 740 in rat

Co−expression conservation analysis:

BDNF−correlated genes in human − mouse − rat

 ~80 conserved BDNF−correlated genes

Discovery of over−represented TFBSs in conserved 

BDNF−correlated genes; DiRE and CONFAC

Novel potential regulators of BDNF expression

Check datasets for BDNF expression:

     BDNF probe set presence on  the platform

     BDNF CALL = PRESENT in > 70% of samples

Non−specific filtering of data in each dataset:

     Exclude genes with missing values in > 1/3 of samples    

     Column−average imputation

     Two−fold expression change from the 

     average in > 5 samples
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selected. It was demonstrated by Elo and colleagues [22]
that in the analysis of simulated datasets a cutoff value r =
0.6 showed both high reproducibility (~0.6 for profile
length equal to 10) and low error. A "data-driven cutoff
value" approach has been rejected because it is based on
the connectivity of the whole network, whereas we
focused only on the links between BDNF and other genes.
A lower threshold of 0.4 generated a list of genes that
showed no significant similarities when analyzed using
g:Profiler tool that retrieves most significant GO terms,
KEGG and REACTOME pathways, and TRANSFAC motifs
for a user-specified group of genes [26]. The value r = 0.6
was chosen over more stringent PCC values because the
lengths of the expression profiles were not too short
(mean profile length ~17, standard deviation ~12). More-
over, the PCC threshold higher than 0.6 was not justified
since we performed further filtering by selecting only con-
served correlated genes, thus controlling the spurious
results.

Each probe set correlation with BDNF that passed the
threshold was defined as a "link". It has been previously
shown that a link must be confirmed in at least 3 experi-
ments (3+ link) in order to be called reliable [15]. There-
fore, we selected (3+) genes for evolutionary conservation
analysis, narrowing the list of correlated genes to elimi-
nate the noise. g:Profiler analysis of these genes revealed
that the results are statistically significant (low p-values)
and the genes belong to GO categories that are relevant to
biological functions of BDNF. For example, the list of
human genes produced the following results when ana-
lyzed with g:Profiler (p-values for the GO categories are
given in the parenthess): nervous system development
(5.96·10-21), central nervous system development
(3.29·10-07), synaptic transmission (4.40·10-11), genera-
tion of neurons (1.58·10-08), neuron differentiation
(1.02·10-06), neurite development (4.11·10-07), heart
development (1.67·10-09), blood vessel development
(5.51·10-14), regulation of angiogenesis (7.16·10-09),
response to wounding (1.32·10-11), muscle development
(1.53·10-10), regulation of apoptosis (1.65·10-07), etc.

We have used r = 0.6 as a "hard" threshold value for the
CC. A disadvantage of this approach is that there will be
no connection between BDNF and other genes whose cor-
relation with BDNF is 0.59 in a specific dataset [27]. Using
multiple datasets was expected to remedy this effect. An
alternative approach would be to use "soft" threshold
approaches [27]. According to the soft threshold
approach, a weight between 0 and 1 is assigned to the con-
nection between each pair of genes (or nodes in a graph).
Often, the weight between the nodes A and B is repre-
sented by some power of the CC between A and B. How-
ever, other similarity measures may be used given that
they are restricted in [0, 1]. A drawback of the weighted
CC approach is that it is not clear how to define nodes that

are directly linked to a specific node [27] because the
available information is related only to how strongly two
nodes are connected. Thus, if neighbors to a node are
requested, threshold should be applied to the connection
strengths. Alternatively, Li and Horvath [28] have devel-
oped an approach to answer this question based on
extending the topological overlap measure (TOM), which
means that the nodes (e.g. genes) should be strongly con-
nected and belong to the same group of nodes. However,
this analysis requires the whole network of a set of genes.
In the current analysis, we did not construct the co-expres-
sion network for all the genes of microarray experiments.
Instead, we focused on a small part of it i.e. the BDNF
gene and the genes linked to BDNF. Therefore, TOM anal-
ysis was not possible using our approach.

To see how the "weighted CC" method would affect the
results of our study we used a simplified approach.
Instead of applying "hard" threshold (0.6) for the CC we
measured the strength of all the connections between
BDNF and all the genes in a microarray experiment. The
connection strength sj = [(1 + CCj)/2]b, where CCj denotes
the CC between BDNF and the gene j, is between 0 and 1
and b is an integer. In order to define b, analysis of the
scale-free properties of the network is required. However,
we used the value 6. Great b values give lower weight to
weak connections. Then we calculated the average
sj(ave(sj)) among all the subsets. Finally, we sorted the
genes based on their ave(sj) and calculated the overlap of
the top of this list with our results for each species (human
mouse and rat). When restricting the top of the weighted
CC list to the same number of genes that we have
obtained for the 3+ list for each species, we observed that
the top-weighted CC genes overlap extensively with the 3+
list (overlapping > 80%) for each species. Therefore, even
though the "soft" and "hard" thresholding approaches are
considerably different we observe quite extensive overlap
of the results. We would like to stress that we did not
apply the full weighted CC and TOM methodology since
it would require the construction of the whole network
which was beyond the aims of our study. However, such
investigation of the whole co-expression network could
contribute to the understanding of BDNF regulation and
function.

Correlation conservation and g:Profiler analysis
Co-expression that is conserved between phylogenetically
distant species may reveal functional gene associations
[29]. We searched for common genes in the lists of 2436
human, 1824 mouse and 740 rat genes (3+ genes, whose
expression is correlated with BDNF). From these genes,
490 were found to be correlated with BDNF in human
and mouse, 210 correlated with BDNF in human and rat,
and 207 conserved between mouse and rat [see Addi-
tional file 7: Conserved BDNF-correlated genes]. We
found a total of 84 genes whose co-expression with BDNF
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Table 1: BDNF-correlated genes conserved between human, mouse and rat.

GO category Conserved correlated genes

protein tyrosine 
kinase PW *

ANGPT1 BAIAP2 DUSP1 EPHA4 EPHA5 EPHA7 FGFR1 GAS6 KALRN IRS2 NTRK2

PTPRF FP106

dendrite 
localization*

DBN1 FREQ GRIA3 KCND2 NTRK2

signal 
transduction*

ANGPT1 CREM DUSP6 EPHA5 FGFR1 IGFBP5 KALRN NR4A2 PDE4B PRKAG2 PTPRF TBX3

BAIAP2 CXCL5 EGR1 EPHA7 GAS6 IL6ST KLF10 NTRK2 PENK PRKCB RGS4 ZFP106
COL11A1 DUSP1 EPHA4 FGF13 GRIA3 IRS2 MYH9 ODZ2 PLAUR PRKCE SCG2

hsa-miR-369-3p* COL11A1 DBC1 DCN DUSP1 GAS6 ITF-2 KLF10 NEUROD6 PENK TRPC4

TF: 
CCCGCCCCCR
CCCC (KROX) *

ATF3 ATP1B1 CCND2 COL11A1 DBN1 DLGAP4 EPHA7 GAS6 GRIA3 IL6ST IRS2 
KCND2

KLF10 NFIA NPTXR PCSK2 SNCA THRA

TF: 
GGGGAGGG 
(MAZ/SP1) *

ATF3 CCND2 DBC1 DUSP6 FREQ ITF-2 MBP NPTXR PCSK1 PTGS2 THRA

BAIAP2 COL4A5 DBN1 EGR1 GRIA3 KALRN MDM2 NR4A2 PDE4B PTPRF TRPC4
BASP1 CREM DLGAP4 EPHA5 HN1 KLF10 NFIA NTRK2 PRKCB1 PURA VCAN
CAMK2D CXCL5 DUSP1 EPHA7 IRS2 LMO7 NPTX1 OLFM1 PRSS23 TBX3

NS development* BAIAP2 EPHA4 FGF13 IRS2 MBP NEUROD6 NR4A2 OLFM1 PTPRF SMARCA4 TBX3
DBN1 EPHA7 FGFR1 KALRN NEFL NPTX1 NTRK2 PCSK2 PURA SNCA

angiogenesis ANGPT1 BAIAP2 CYR61 MYH9 SCG2 SERPINE1 TBX3

apoptosis/
anti-apoptosis

BIRC4 KLF10 NEFL PLAGL1 PRKCE SCG2 SNCA TBX3

cell cycle CAMK2D CORO1A DUSP1 MDM2 MYH9 PPP3CA

synaptic 
transmission/
plasticity

DBN1 KCND2 MBP NPTX1 NR4A2 SNCA

GO categories marked with a star (*) have been reported as statistically significant for this gene list by g:Profiler analysis tool. Human gene names are given representing mouse and rat orthologs 
whenever gene names for all three species are not the same. GO - gene ontology, PW - pathway, TF - transcription factor, NS - nervous system.
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was conserved in all three organisms (Table 1) [see also
Additional file 7: Conserved BDNF-correlated genes].

Due to a variety of reasons (e.g. sample size of a dataset/
subset, probe set binding characteristics, sample prepara-
tion methods, etc.), when measured only in one dataset/
subset, some of the co-expression links might occur by
chance. Checking for multiple re-occurrence of a link is
expected to reduce the number of false-positive links.
More importantly, the conservation analysis should fur-
ther reduce the number of artifacts. However, since our
analysis comprised a multitude of subsets it was impor-
tant to estimate the statistical significance of the results.
To tackle this problem, we created randomized subsets
similarly to what was described by Lee and colleagues [15]
and calculated the distribution of correlated 3+ links for
each species separately. The results showed that our co-
expression link confirmation analysis resulted in a signif-
icantly higher number of links compared to the rand-
omized data (p-value < 0.005 for each species). However,
it should be mentioned that the number of 3+ links
remained quite high in the randomized datasets: for
human subsets it constituted about 58% of the observed
3+ links, for mouse about 43% and for rat 21%. These
results justify the subsequent co-expression conservation
analysis step. Indeed, in random human, mouse and rat
subsets the number of correlated 3+ links was only about
9% of the discovered conserved BDNF-correlated links
(that is ~7.5 genes out of 84).

Analysis of the list of 84 conserved BDNF-correlated genes
using g:Profiler showed significantly low p-values for all
the genes and revealed significant GO categories related to
BDNF actions [see Additional file 8: g:Profiler analysis].
Statistically significant GO categories included: i) MYC-
associated zinc finger protein (MAZ) targets (44 genes, p =
1.82·10-05); ii) signal transduction (36 genes, p =
3.51·10-06); iii) nervous system development (17 genes, p
= 5.27·10-08); iv) Kruppel-box protein homolog (KROX)
targets (18 genes, p = 1.21·10-04); v) transmembrane
receptor protein tyrosine kinase pathway (7 genes, p =
3.56·10-06); vi) dendrite localization (5 genes, p =
1.82·10-05) (Table 1).

According to the Gene Ontology database, conserved
BDNF-correlated gene products participate in axonogene-
sis (BAIAP2), dendrite development (DBN1), synaptic
plasticity and synaptic transmission (DBN1, KCND2,
MBP, NPTX1, NR4A2 and SNCA), regeneration (GAS6,
PLAUR), regulation of apoptosis (XIAP (known as
BIRC4), KLF10, NEFL, PLAGL1, PRKCE, SCG2, SNCA, and
TBX3), skeletal muscle development (MYH9, PPP3CA,
and TBX3) and angiogenesis (ANGPT1, BAIAP2, CYR61,
MYH9, SCG2, SERPINE1 and TBX3) (Table 1). Out of 84,
24 BDNF-correlated genes are related to cancer and 14 are
involved in neurological disorders (Table 2).

Interactions among correlated genes
We searched if any of the correlated genes had known
interactions with BDNF using Information Hyperlinked
over Proteins gene network (iHOP). iHOP allows navigat-
ing the literature cited in PubMed and gives as an output
all sentences that connect gene A and gene B with a verb
http://www.ihop-net.org/[30]. We constructed a "gene
network" using the iHOP Gene Model tool to verify
BDNF-co-expression links with the experimental evi-
dences reported in the literature (Figure 2). For the URL
links to the cited literature see Additional file 9: iHOP ref-
erences.

According to the literature, 17 out of 84 conserved corre-
lated genes have been reported to have functional interac-
tion or co-regulation with BDNF (Figure 2A). IGFBP5
[31], NR4A2, RGS4 [32] and DUSP1 [33] have been pre-
viously reported to be co-expressed with human or rodent
BDNF. Other gene products, such as FGFR1 [34] and
SNCA [35] are known to regulate BDNF expression. Pro-
protein convertase PCSK1 is implied in processing of pro-
BDNF [36]. PTPRF tyrosine phosphatase receptor associ-
ates with NTRK2 and modulates neurotrophic signaling
pathways [37]. Thyroid hormone receptor alpha (THRA)
induces expression of BDNF receptor NTRK2 [38]. Finally,
expression of such genes like EGR1 [39], MBP [40], NEFL
[41], NPTX1 [42], NTRK2, SERPINE1 [43], SCG2 [44],
SNCA [45] and TCF4 (also known as ITF2) [46] is known
to be regulated by BDNF signaling. CCND2, DUSP1,
DUSP6, EGR1 and RGS4 gene expression is altered in cor-
tical GABA neurons in the absence of BDNF [47].

iHOP reports the total of 250 interactions with human
BDNF. In order to assess the probability of observing 17/
84 or more functional interactions between BDNF and
other genes, we had to make an assumption regarding the
total number of human genes that iHOP uses. A lower
number of total genes would result in higher p-values
whereas a higher number of total genes would produce
lower p-values. We assumed that the total number of
human genes is N = 5000, 10000, 20000 or 30000. Fur-
thermore, the total number of genes linked to BDNF is m
= 250 based on iHOP data. Thus, the p-values were
obtained using the right-tail of the hypergeometric proba-
bility distribution. For N = 5000, 10000, 20000 or 30000,
the p-values are 1.0 × 10-07, 1.7 × 10-12, 1.3 × 10-17, 1.18 ×
10-20 respectively.

By analyzing the iHOP network indirect connections with
BDNF could be established for the genes that did not have
known direct interactions with BDNF (Figure 2B). For
example, SCG2 protein is found in neuroendocrine vesi-
cles and is cleaved by PCSK1 [48] - protease that cleaves
pro-BDNF. BDNF and NTRK2 signaling affect SNCA gene
expression and alpha-synuclein deposition in substantia
nigra [49]. ATF3 gene is regulated by EGR1 [50], which
Page 7 of 20
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expression is activated by BDNF [39]. For more interac-
tions see Figure 2.

Motif discovery
Assuming that genes with similar tissue-specific expres-
sion patterns are likely to share common regulatory ele-
ments, we clustered co-expressed genes according to their
tissue-specific expression using information provided by
TiProd database [51]. Each tissue was assigned a category

and the genes expressed in corresponding tissues were
clustered into the following categories: i) CNS, ii) periph-
eral NS (PNS), ii) endocrine, iii) gastrointestinal, and iv)
genitourinary. We applied DiRE [52] and CONFAC [53]
motif-discovery tools to search for statistically over-repre-
sented TFBSs in the clusters and among all conserved
BDNF-correlated genes. DiRE can detect regulatory ele-
ments outside of proximal promoter regions, as it takes
advantage of the full gene locus to conduct the search. The

Table 2: Conserved correlated genes are associated with various types of cancer and neurological disorders.

Disease Associated genes References

Schizophrenia BDNF RGS4 NR4A2 Schmidt-Kastner et al. (2006)

Parkinson's disease BDNF PTGS2 SNCA NR4A2 Murer et al. (2001)
Chae et al. (2008)
Pardo and van Duijn (2005)

Alzheimer's BDNF
KALRN

Murer et al. (2001)
Youn et al. (2007)

Polyglutamine neurodegeneration NEFL
BAIAP2

Mosaheb et al. (2005)
Thomas et al. (2001)

alpha-mannosidosis MAN1A1 D'Hooge et al. (2005)

Ophthalmopathy CYR61 DUSP1 EGR1 PTGS2 Lantz et al. (2005)

Epilepsy BDNF DUSP6 EGR1 Binder and Scharfman (2004)
Rakhade et al. (2007)

Depression BDNF DUSP1 Russo-Neustadt and Chen (2005)
Rakhade et al. (2007)

Ischemia BDNF CD44 PTGS2 Binder and Scharfman (2004)
Murphy et al. (2005)

Ovarian carcinoma BDNF ITF2 DUSP1 RGS4 Yu et al. (2008)
Kolligs et al. (2002)
Puiffe et al. (2007)

Breast cancer BDNF FGFR1 CCND2 PLAU SERPINE1 PLAUR MAZ DUSP6
EGR1
KFL10
PTRF

Tozlu et al. (2006)
Koziczak et al. (2004)
Grebenchtchikov et al. (2005)
Cui et al. (2006)
Liu et al. (2007)
Reinholz et al. (2004)
Levea et al. (2000)

Lung cancer BDNF ODZ2 CCND2 GFI1 Ricci et al. (2005)
Kan et al. (2006)

Prostate cancer BDNF IGFBP5 PLAUR p75NTR Bronzetti et al. (2008)
Nalbandian et al. (2005)

Pheochromocytoma PCSK1 PCSK2 SCG2 Guillemot et al. (2006)

Endometrial cancer CXCL5 OLFM1 Wong et al. (2007)

Leukemia PKCB1 CCND2 Hans et al. (2005)
Page 8 of 20
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software predicts function-specific regulatory elements
(REs) consisting of clusters of specifically associated and
conserved TFBSs, and it also scores the association of indi-
vidual TFs with the biological function shared by the
group of input genes [52]. DiRE selects a set of candidate
REs from the gene loci based on the inter-species conser-
vation pattern which is available in the form of precom-
puted alignments of genomic sequence from fish, rodent,
human and other vertebrate lineages [54]. This type of the
alignment enables the tool to detect regulatory elements
that are phylogenetically conserved at the same genomic
positions in different species. CONFAC software [53] ena-
bles the identification of conserved enriched TFBSs in the
regulatory regions of sets of genes. To perform the search,
human and mouse genomic sequences from orthologous
gene pairs are compared by pairwise BLAST, and only sig-
nificantly conserved (e-value < 0.001) regions are ana-
lyzed for TFBSs.

Using DiRE we discovered two regulatory regions at the
human BDNF locus that were enriched in TFBSs (Figure 3)
[see also Additional file 10: DiRE motif discovery results
for BDNF and 84 conserved correlated genes]. The first
regulatory region spans 218 bp and is located 622 bp
upstream of human BDNF exon I transcription start site
(TSS). The second putative regulatory region is 1625 bp
long and located 2915 bp downstream of the BDNF stop-
codon. Analysis of mouse and rat gene lists produced sim-
ilar results. Significant over-representation of binding
sites for WT1, KROX, ZNF219, NFkB, SOX, CREB, OCT,
MYOD and MEF2 transcription factors was reported by
DiRE in BDNF and BDNF-correlated genes when all the
genes were analyzed as one cluster [see Additional file 10:
DiRE motif discovery results for BDNF and 84 conserved
correlated genes]. Also, the following cluster-specific over-
representation of TFBSs was detected: i) CNS - KROX; ii)

endocrine - TAL1beta/TCF4, ETS2, SOX5, and ARID5B
(known as MRF2); iii) gastrointestinal - MMEF2, and
SREBF1; iv) genitourinary - ATF4/CREB, and GTF3 (TFIII)
(Table 3) [see also Additional file 11: DiRE motif discov-
ery results for conserved BDNF-correlated genes clustered
by tissue-specific expression].

To cross-check the results obtained with DiRE, we
repeated the analysis using the CONFAC tool. CONFAC
results overlapped with DiRE results and suggested novel
regulatory elements in human BDNF promoters/exons I-
IX and in BDNF 3'UTR, which were highly conserved
among mammals and over-represented in the BDNF-cor-
related genes. Then, evolutionary conservation across
mammals was checked for the core element of each TFBS
discovered in the BDNF gene using UCSC Genome
Browser. Based on MW test results [see Additional file 12:
The results of Mann-Whitney tests (CONFAC)], on the
Importance score [see Additional file 10: DiRE motif dis-
covery results for BDNF and 84 conserved correlated
genes] and on the conservation data (UCSC), we propose
potential regulators of BDNF (Figure 3 and Table 3) [see
also Additional file 13: Highly conserved TFBSs in the
BDNF gene (according to DiRE and CONFAC)]. It is
remarkable, that the TFBSs discovered in the BDNF gene
are highly conserved: most of the TFBSs are 100% con-
served across mammals from human to armadillo, some
of them being conserved even in fish (Figure 3).

Discussion
Microarray meta-analysis has proved to be useful for con-
structing large gene-interaction networks and inferring
evolutionarily conserved pathways. However, it is rarely
used to explore the regulatory mechanisms of a single
gene. We have exploited microarray data from 80 experi-
ments for the purpose of the detailed analysis of the con-

Reported interactions between conserved correlated genes in humanFigure 2
Reported interactions between conserved correlated genes in human. Connections between the genes were created 
by accessing the literature using iHOP tool. (A) Interactions between correlated genes and BDNF. Arrows: "↔" co-expression 
or co-regulation; "BDNF← "regulation of BDNF; "BDNF→" regulation by BDNF. (B) Connections among correlated genes.
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Novel regulatory elements in the BDNF geneFigure 3
Novel regulatory elements in the BDNF gene. Highly conserved TFBSs in the BDNF locus as predicted by DiRE and 
CONFAC tools. Given TFBSs were also found to be over-represented in the BDNF-correlated genes. Histograms represent 
evolutionary conservation across 9 mammal species (adapted from UCSC Genome Browser at http://genome.ucsc.edu/) (39). 
The height of the histogram reflects the size of the conservation score. Conservation for each species is shown in grayscale 
using darker values to indicate higher levels of overall conservation. Missing sequences are highlighted by regions of yellow. Sin-
gle line: no bases in the aligned species; double line: aligning species has one or more unalignable bases in the gap region. Tran-
scribed regions (BDNF exons and 3'UTR) are highlighted in green; non-transcribed regions (BDNF promoters and introns) are 
highlighted in blue. Red ovals represent TFBSs mapped to the BDNF gene sequences. Mapped TFBSs have Matrix Similarity 
score >0.85 and Core Similarity score >0.99. Core elements of presented TFBSs have 100% of conservation across mammals. 
For the structure of human BDNF see Pruunsild et al., 2007 [11].
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Table 3: Over-represented conserved TFBSs in human BDNF and in the BDNF-correlated genes as predicted by DiRE and CONFAC.

TFBS p-value
CONFAC

Target genes

ARNT 0.012 BDNF pI-II, BDNF 3'UTR; PRKCE, USP2, CAMK2D, CCND2, NEUROD6, THRA, DUSP1, CBX6, ATP1B1, FREQ, ITF-2

POU3F2
(BRN2)

< 0.001 BDNF pII-V, BDNF exon II, IV, IX, BDNF3'UTR; USP2, CAMK2D, THRA, NFIA, PRSS23, CBX6, CUGBP2, EPHA5, EPHA7, 
BAIAP2, RKCE, CPD, EPHA4, IL6ST, CCND2, DUSP6, KCND2, MAN1A1, SCG2, GRIA3, COL11A1, TRPC4, FGF13, HN1, 
ANGPT1, TCF4, MYH9, PCSK1

CHOP NA BDNF I, COL11A1, CD44, BAIAP2, PPP3CA, IL6ST, NEUROD6, SCG2, CYR61, IGFBP5, THRA, NFIA, FGF13, ATP1A2, 
ANGPT1, DBC1, CUGBP2, EGR1

CREB 0.013 BDNF pI, IV, VI, BDNF exon I; BAIAP2, PRKCE, USP2, EPHA4, CAMK2D, CCND2, FGFR1, CYR61, GRIA3, THRA, DUSP1, 
PENK, PCSK1, PCSK2, HN1, ATP1B1, EGR1, COL4A5, KLF10, EPHA4, FGF13, CBX6, CUGBP2, EPHA5

ETS2 NA BDNF pII, VIII; THRA, EPHA7, FGF13, BAIAP2 and NFIA promoters, and in COL11A1, PLAGL1, and XIAP intergenic regions

FOXO4 < 0.001 BDNF exon I, II, VIII, IX, BDNF pIII, IV, BDNF 3'UTR; CD44, TBX3, BAIAP2, PPP3CA, CPD, USP2, PRKCB, EPHA4, CORO1A, 
CAMK2D, NEUROD6, FGFR1, SCG2, CYR61, GRIA3, THRA, NFIA, COL11A1, DUSP1, TRPC4, PRSS23, PCSK2, ANGPT1, 
FREQ, PRKAG2, TCF4, MYH9, PCSK1, DBC1, CUGBP2, EGR1, EPHA5

GATA1 < 0.001 BDNF pI, III-V, BDNF exon I, II, VIII, IX, BDNF 3'UTR; CD44, TBX3, SNCA, PPP3CA, PRKCE, COL4A5, USP2, EPHA4, IL6ST, 
SLC4A7, CAMK2D, ATF3, CCND2, NEUROD6, DUSP6, KCND2, SCG2, CYR61, IGFBP5, THRA, NFIA, COL11A1, PENK, 
FGF13, PRSS23, ATP1B1, ATP1A2, ANGPT1, DBC1, CUGBP2, EGR1

GFI1 < 0.001 BDNF exon I, BDNF pII-VI, BDNF 3'UTR; SNCA, ATP1A2, MYH9, DBC1, CD44, BAIAP2, PPP3CA, PRKCE, COL4A5, CPD, 
USP2, EPHA4, IL6ST, SLC4A7, CAMK2D, CCND2, NEUROD6, KCND2, SCG2, CYR61, IGFBP5, THRA, NFIA, COL11A1, 
DUSP1, TRPC4, PENK, FGF13, PRSS23, PCSK2, ATP1B1, PTPRF, ANGPT1, TCF4, CUGBP2, EGR1, EPHA5, EPHA7

IK1 (ikaros) < 0.001 BDNF pI, BDNF exon I-V, IX, BDNF 3'UTR; PRKCB, KLF10, KCND2, THRA, NFIA, COL11A1, FGF13, ATP1A2, MYH9, PCSK1, 
CUGBP2, EPHA7

KROX family NA BDNF pV, BDNF exon IV; PPP3CA, NFIA, DBN1, KCND2, IRS2, MAN1A2, CCND2, PVRL3, XIAP, DLGAP4, CYR61, ATP1B1, 
PURA, SMARCA4, MYH9, GRIA3, EPHA4, DUSP6, EGR1, COL4A5, TRPC4, PRKCB, NPTX1, PTGS2, EPHA5, FGFR1, CBX6, 
PRKCE, KLF10, THRA, ATP1A2, BAIAP2, CPD, CORO1A, CAMK2D, IGFBP5, DUSP1, PTPRF, FREQ, PRKAG2

MAZ NA BDNF pVh, BDNF exon III, IV; CD44, PPP3CA, PRKCE, COL4A5, USP2, PRKCB, KLF10, EPHA4, CAMK2D, CCND2, DUSP6, 
GRIA3, THRA, COL11A1, PENK, FGF13, CBX6, ATP1B1, PTPRF, ATP1A2, FREQ, DBN1, CUGBP2, EGR1, EPHA7

MEF2 NA BDNF pII-V, BDNF exon II, IX, BDNF 3'UTR; CD44, TBX3, BAIAP2, PPP3CA, PRKCE, COL4A5, EPHA4, IL6ST, CAMK2D, 
CCND2, NEUROD6, DUSP6, MAN1A1, IGFBP5, COL11A1, TRPC4, PRSS23, ANGPT1, FREQ, PURA, MYH9, PCSK1, CUGBP2, 
EPHA7, SNCA, FGF13

MYC/MAX NA BDNF pI, II, IV; CD44, TBX3, PRKCE, USP2, CAMK2D, CCND2, NEUROD6, THRA, NFIA, DUSP1, CBX6, ATP1B1, FREQ, ITF-
2, EGR1

MYCN NA BDNF pI, II; PRKCE, USP2, CAMK2D, CCND2, NEUROD6, THRA, DUSP1, CBX6, ATP1B1, FREQ, ITF-2

MYOD < 0.001 BDNF exon I, IX; CD44, PRKCE, USP2, PRKCB, EPHA4, DUSP6, SCG2, SMARCA4, THRA, PRSS23, ATP1B1, CUGBP2

NFkB < 0.001 BDNFI, BDNF 3'UTR; PPP3CA, KLF10, PCSK2, ATP1B1, ANGPT1, MYH9, USP2, DUSP6, FGF13, PURA, BAIAP2, CAMK2D, 
CCND2, FGFR1, CYR61, PCSK2, MYH9, CUGBP2, EGR1, EPHA7

NRSF NA BDNFII, EPHA4, IRS2, EPHA5, NPTX1, PRKCB, TRPC4, COL4A5

S8 < 0.001 BDNF pII-IV, BDNF exon II, IV, VIII, IX, BDNF 3'UTR; CD44, BAIAP2, PRKCE, NPTX1, EPHA4, CAMK2D, CCND2, NEUROD6, 
DUSP6, FGFR1, KCND2, MAN1A1, SCG2, THRA, NFIA, COL11A1, PENK, PCSK2, ANGPT1, PURA, ITF-2, MYH9, DBC1, 
CUGBP2, EGR1, EPHA5
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servation of BDNF gene expression and regulation.
Analysis of co-expression conservation combined with
motif discovery allowed us to predict potential regulators
of BDNF gene expression as well as to propose novel gene
interactions. Several transcription factors that were identi-
fied here as potential regulators of human BDNF gene
have been previously shown to regulate rodent BDNF
transcription in vitro and in vivo. These transcription fac-
tors include REST (also known as NRSF) for BDNF pro-
moter II [55], CREB for BDNF promoter I and IV [56,57],
USF [58], NFkB [59], and MEF2 for BDNF promoter IV
[60]. The support of the bioinformatics findings by exper-
imental evidence strongly suggests that the potential regu-
latory elements discovered in this study in the BDNF locus
may be involved in the regulation of BDNF expression.

According to g:Profiler, 44 out of 84 conserved correlated
genes identified in this study (including BDNF) carry
MYC-associated zinc finger protein (MAZ) transcription
factor binding sites. Our study revealed putative binding
sites for MAZ in BDNF promoter Vh and in exons III and
IV, suggesting that MAZ could be involved in BDNF gene
regulation from promoters III, and possibly from promot-
ers IV, V, Vh and VI that lie in close proximity in the
genome. It has been shown that MAZ is a transcriptional
regulator of muscle-specific genes in skeletal and cardiac
myocytes [61]. Histone deacetylation and DNA methyla-
tion might be involved in the regulation of expression of
target genes by MAZ [62]. BDNF mRNA expression in the
heart is driven by promoters IV, Vh and VI [11]. Epigenetic
regulation of the BDNF gene expression is achieved in a
cell-type and promoter-specific manner [12,63]. This
could be a possible regulation mechanism of the BDNF
gene by MAZ. Also, MAZ drives tumor-specific expression
of PPARG in breast cancer cells, a nuclear receptor that
plays a pivotal role in breast cancer [64]. Expression levels
of BDNF and BDNF-correlated genes CCND2, DUSP6,
EGR1, KLF10 and PTPRF are altered in breast cancer (see
Table 2). These genes were identified as putative targets of
MAZ in the present study suggesting potential role for
MAZ in their regulation in breast cancer cells.

Our analysis revealed that Wilms' tumor suppressor 1
(WT1) transcription factor binding sites are overrepre-
sented in the BDNF-correlated genes. WT1 binding sites
were detected in BDNF promoter I, in IRS2 (insulin recep-
tor substrate 2), EGR1, BAIAP2 (insulin receptor substrate
p53) and PURA promoters and in 19 other genes. WT1
acts as an oncogene in Wilms' tumor (or nephroblast-
oma), gliomas [65] and various other human cancers
[66]. WT1 activates the PDGFA gene in desmoplastic
small round-cell tumor, which contributes to the fibrosis
associated with this tumor [67]. Puralpha (PURA), a puta-
tive WT1 target gene identified in this study, has also been
reported to enhance transcription of the PDGFA gene
[68]. WT1 regulates the expression of several factors from
the insulin-like growth factor signaling pathway [69].
WT1 was also shown to bind the promoter of EGR1 gene
[70]. Neurotrophins and their receptors also may be
involved in the pathogenesis of some Wilms' tumors [71].
Transcriptional activation of BDNF receptor NTRK2 by
WT1 has been shown to be important for normal vascu-
larization of the developing heart [72]. Moreover, WT1
might have a role in neurodegeneration, observed in
Alzheimer's disease brain [73]. We hypothesize that
BDNF and other WT1 targets identified in this study, can
play a role in normal development and tumorigenesis
associated with WT1.

KROX family transcription factors' binding sites were
found to be abundant in the promoters of BDNF and
BDNF-correlated genes. KROX binding motif was detected
in BDNF promoter V and EGR2 binding site was found in
BDNF promoter IV. Also, EGR1 gene expression was cor-
related with BDNF in human, mouse and rat. KROX fam-
ily of zinc finger-containing transcriptional regulators,
also known as Early Growth Response (EGR) gene family,
consists of EGR1-EGR4 brain-specific transcription factors
[74] that are able to bind to the same consensus DNA
sequence (KROX motif) [75]. EGR1 is involved in the
maintenance of long-term potentiation (LTP) and is
required for the consolidation of long-term memory [76].
EGR3 is essential for short-term memory formation [77]
and EGR2 is necessary for Schwann cell differentiation

SOX5 0.001 BDNF exon I, BDNF 3'UTR; EPHA4, THRA and PLAGL1 3'UTR; NFIA and OLFM1 promoters; SCG2 intergenic region; KCND2 
intron

TAL1/TCF4 NA BDNF pIV, BDNF exon I, BDNF 3'UTR; ATP1B1 3'UTR, MYH9 3'UTR and XIAP 3'UTR; SCG2, CD44, SERPINE1, SLC4A7, 
CCND2, NEUROD6, FGFR1, THRA, COL11A1, PCSK2, ANGPT1, DBC1, CUGBP2

WT1 NA BDNF pI, BASP1, PPP3CA, NFIA, DBN1, EPHA7, BAIAP2, XIAP, DLGAP4, PURA, IRS2, ATP1B1, KCND2, GRIA3, HN1, EPHA4, 
EGR1, COL4A5, TRPC4, ATP1A2, PRKCB, NPTX1, DBC1, EPHA5

In BDNF, TFBSs were found in promoters (p), exons or 3'UTR of the gene. In the correlated genes, TFBSs were searched for and discovered mostly 
in promoters (unless indicated otherwise). P-values are given for the TFBSs discovered using CONFAC. NA - not applicable for the TFBSs 
discovered using DiRE [see Additional files 10 and 11 for TFBS importance score].

Table 3: Over-represented conserved TFBSs in human BDNF and in the BDNF-correlated genes as predicted by DiRE and CONFAC. 
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and myelination [78,79]. Since BDNF plays a significant
role in the above mentioned processes, it would be
intriguing to study the regulation of BDNF by EGR factors.

Binding sites for GFI1 and MEF2 were found in BDNF
promoters, exons and 3'UTR, and in the promoter of the
SNCA gene. GFI1 binding sites were detected in BDNF
promoters II-VI and in exon I. MEF2 sites were found in
BDNF promoters II-V and in exons II and IX. SNCA over-
expression and gene mutations that lead to SNCA protein
aggregation cause Parkinson's disease (PD) [80]. BDNF
and SNCA expression levels change conversely in the
nigro-striatal dopamine region of the PD brain [80,81].
The myocyte enhancer factor-2 (MEF2) is known to be
necessary for neurogenesis and activity-dependent neuro-
nal survival [82,83]. Inactivation of MEF2 is responsible
for dopaminergic loss in vivo in an MPTP mouse model of
PD [84]. MEF2 recruits transcriptional co-repressor
Cabin1 and class II HDACs to specific DNA sites in a cal-
cium-dependent manner [85]. MEF2 is one of the TFs that
contribute to the activity-dependent BDNF transcription
from promoter IV [60]. The growth factor independence-
1 (GFI1) transcription factor is essential for the develop-
ment of neuroendocrine cells, sensory neurons, and
blood. Also, GFI1 acts as an oncogene in human small cell
lung cancer (SCLC), the deadliest neuroendocrine tumor
[86]. GFI1 mediates reversible transcriptional repression
by recruiting the eight 21 corepressor (ETO), histone
deacetylase (HDAC) enzymes and the G9a histone lysine
methyltransferase [87]. It has also been shown that GFI1
Drosophila homolog Senseless interacts with proneural
proteins and functions as a transcriptional co-activator
suggesting that GFI1 also cooperates with bHLH proteins
in several contexts [88]. Our findings are impelling to
explore inverse regulation of BDNF and SNCA genes by
GFI1 and MEF2 in neurons generally and in Parkinson's
disease models in particular.

BDNF promoters II-V and BDNF exons II, IV and IX con-
tain BRN2 (brain-specific homeobox/POU domain
POU3F2) binding sequences. BRN2 is driving expression
of the EGR2 gene - an important factor controlling myeli-
nation in Schwann cells [78,79]. BRN2 also activates the
promoter of the Notch ligand Delta1, regulating neuro-
genesis. It also regulates the division of neural progeni-
tors, as well as differentiation and migration of neurons
[89]. Considering a prominent role of BDNF in myelina-
tion and neurogenesis, it is reasonable to hypothesize that
BRN2 fulfills its tasks in part by regulating BDNF gene
expression.

Evidence is emerging that not only proximal promoters,
but also distant elements upstream and downstream from
TSS can regulate transcription [90,91]. We found that

BDNF 3'UTR contains potential binding sites for TCF4
(also known as ITF2), GFI1, BRN2, NFkB and MEF2.

Finally, we have discovered multiple binding sites in
human BDNF promoters for the transcription factors that
have been shown to participate in neuronal activity-
dependent transcription of rodent BDNF gene. BDNF pro-
moters I and IV are the most highly induced following
neuronal activation. BDNF promoter I was shown to be
regulated by cAMP-responsive element (CRE) and the
binding sequence for upstream stimulatory factor 1/2
(USF) in response to neuronal activity and elevated cal-
cium levels [92]. Several TFs (USF [58], CREB [57], MEF2
[60], CaRF [93] and MeCP2 [63]) regulate BDNF pro-
moter IV upon calcium influx into neurons. Rat BDNF
promoter II has also shown induction by neuronal activ-
ity, though to a lesser extent compared to promoters I and
IV [12,94]. However, calcium responsive elements have
not been yet studied in BDNF promoter II and it was
believed that its induction is regulated by the elements
located in the promoter I. Our analysis of human BDNF
gene detected CREBP1 and USF binding sites in BDNF
promoter I, USF and MEF2 binding sites in promoter II
and USF, MEF2 and CREB binding sites in promoter IV.
We suggest that MEF2 and USF elements might contribute
to BDFN promoter II induction by neuronal activity. In
addition, we have detected conserved TCF4 (ITF2) bind-
ing sequences in BDNF promoter IV, and in exon I. It has
been shown that calcium-sensor protein calmodulin can
interact with the DNA binding basic helix-loop-helix
(bHLH) domain of TCF4 inhibiting its transcriptional
activity [95]. Preliminary experimental evidence (Sepp
and Timmusk, unpublished data) suggests that TCF4 tran-
scription factor is involved in the regulation of BDNF
transcription. TCF4 might play in concert with CREB,
MEF2 and other transcription factors to modulate BDNF
levels following neuronal activity.

In our study we performed the analysis of a well-known
gene and it served as a good reference to evaluate the
results of the "subset" approach. However, the "subset"
method coupled with the analysis of evolutionary conser-
vation of co-expression is suitable for studying poorly
annotated genes as well. This approach examines co-
expression across a variety of conditions, which helps to
discover novel biological processes and pathways that the
guide-gene and its co-expressed genes are related to. Also,
searching for conserved TFBS modules in co-expressed
genes helps to discover functionally important genomic
regions and this does not require detailed prior knowl-
edge of the guide-gene's structure. However, when
attempting to study less known genes, additional in silico
analysis of genomic sequences using bioinformatics tools
for prediction of promoters, TSSs and exon-intron junc-
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tions would be useful. Also, sequence alignment with co-
expressed genes' promoters would be informative.

Conclusion
A major impediment of meta-coexpression analysis is the
differences among experiments. So far, analyzing gene
expression across different microarray platforms remains
a challenge. Discrepancies in the expression measure-
ments among different platforms originate from different
probe sequences used, different number of genes on the
platform, etc. Therefore, in order to obtain reliable results,
we used only one microarray platform type for the analy-
sis. In addition, we introduced a new approach to increase
the accuracy of the analysis: we divided datasets into sub-
sets and sought for correlated genes for each subset,
implying that each subset represents an independent
experimental condition. We have also performed correla-
tion link confirmation among subsets and correlation
conservation analysis to discover functionally related
genes.

One of the limitations of the co-expression conservation
analysis is the fact that it detects only phylogenetically
conserved co-expression events. Human-specific phe-
nomena cannot be captured by this kind of analysis. In
relation to BDNF this means, for example, that regulation
of human BDNF gene by antisense BDNF RNA (BDNFOS
gene) [11,96] could not be studied by co-expression con-
servation analysis, since BDNFOS gene is not expressed in
rodents [12,97]. Also, co-expression analysis using micro-
array experiments is limited by the number of genes
included in the microarray platforms. For example, since
BDNFOS probe sets were absent from microarray plat-
forms, we could not study co-expression, anti-coexpres-
sion or differential expression of BDNF and BDNFOS. In
addition, our list of correlated genes did not include all
possible correlation links with BDNF due to the fact that
our analysis was deliberately limited to Affymetrix micro-
array platforms. Moreover, in our analysis we included
only those experiments that met certain requirements
regarding the BDNF gene expression. However, biologi-
cally meaningful results justify our rigorous filtering
approach: correlated genes identified in this study are
known to regulate nervous system development, and are
associated with various types of cancer and neurological
disorders. Also, experimental evidence supports the
hypothesis, that transcription factor identified here can
act as potential BDNF regulators.

In summary, we have discovered a set of genes whose co-
expression with BDNF was conserved between human
and rodents. Also, we detected new potential regulatory
elements in BDNF-correlated genes and in the BDNF
locus using bioinformatics analysis, in which BDNF was
playing a role of a guide-gene. The presented concept of
co-expression conservation analysis can be used to study

the regulation of any other gene of interest. The study pro-
vides an example of using high-throughput advancements
in studying single genes and proposes hypotheses that
could be tested using molecular biology techniques.

Methods
Microarray datasets and data filtering
Homo sapiens, Mus Musculus and Rattus Norvegicus micro-
array datasets were downloaded from (GEO) [98]. We
selected Affymetrix GeneChips experiments that com-
prised a minimum of 16 samples. Datasets which con-
tained BDNF Detection call = Absent [99] in more than
30% of the samples were not selected [see Additional file
2: Microarray datasets] for the list of datasets used in the
analysis. Since the arrays contained normalized data, no
additional transformation was performed. To reduce the
noise, we carried out non-specific filtering of data in each
dataset. Genes that had missing values in more than 1/3
of the samples of a given dataset were excluded from the
analysis in order to avoid data over-imputation [100]. For
the remaining genes, we followed a column-average
imputation method. Totally, only 0.098% of the gene
expression values were imputed with this approach. Fur-
ther, we selected the genes whose expression changes were
greater than two-fold from the average (across all sam-
ples) in at least five samples in a dataset [19,49]. Addition-
ally, datasets were eliminated from the study if BDNF
probe sets' expression failed to meet the above mentioned
criteria [see Additional file 1: BDNF probe sets]. Out of 72
human datasets, only 38 passed non-specific filtering,
whereas 24 out of 82 mouse and 18 out of 35 rat datasets
passed the filtering and were used for the analysis.

Each dataset was split into subsets (i.e. normal tissue, dis-
ease tissue, control, treatment, disease progression, age,
etc.) so that subsets of the same dataset would not have
any overlapping samples [see Additional file 3: Subsets].
The division into subsets was performed manually,
according to the information included in the experiment.
In some cases subsets could be further subdivided into
biologically appropriate sub-subsets [see Additional file 2:
Microarray datasets and Additional file 3: Subsets]. Sub-
sets that contained less than eight samples were excluded
from analysis to avoid inaccuracy in the estimation of
genic correlations. Biological and technical replicates were
handled as equal. From all human datasets, one (GDS564
dataset) contained one technical replicate per male sam-
ple and one technical replicate for all female samples
except one. For the mouse datasets no technical replicates'
data accompanied the dataset information. Finally, in rat
GDS1629 dataset one technical replicate has been used
for each biological replicate.

Differential expression
We used Kruskal-Wallis test [23] to measure differential
expression of BDNF across subsets in each dataset.
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Kruskal-Wallis test is a non-parametric method for testing
equality of population medians within different groups. It
is similar to one-way analysis of variance (ANOVA). How-
ever, it does not require the normality assumption. Alter-
natively, it represents an extension of Mann-Whitney U
test [101,102] for more than 2 samples. Since we used
multiple datasets we applied the false discovery rate
approach (FDR) at the 0.05 level as it is described by Ben-
jamini and Hochberg (1995) [103].

Co-expression analysis
For each gene standard Pearson correlation coefficient
(PCC) was calculated across samples. We followed a resa-
mpling strategy, which allows the calculation of the stand-
ard deviation of the PCC between a pair of probe sets.
PCC was calculated for each subset separately. The PCC
was calculated following a resampling bootstrap
approach. For example, in order to calculate the CCj
between BDNF and gene j when data consisted of m
points, we resampled the m points with replacement cre-
ating 2000 re-samples [104]. Then the CCj was calculated
as the average CC for the 2000 re-samples and the 95%
bootstrap confidence interval was estimated. The average
CC is very close to the sample CC. However, when m is a
small number and outliers are contained in the sample
then the bootstrap confidence interval may be large. The
motivation behind the bootstrap approach is to avoid
genes with large bootstrap confidence intervals. Thus,
when we request the links between BDNF and the genes
in the microarray experiment we ask for the genes j, whose
CCj is greater than 0.6 and the 95% bootstrap confidence
interval contains only positive numbers. If instead of the
bootstrapping approach we would use just the sample CC,
which is more efficient computationally, then a larger set
of links would be obtained which would contain some
genes with very large bootstrap confidence intervals.

A threshold value of r = 0.6 was used to retrieve a list of
probe sets that were co-expressed with the BDNF probe set
[22,49]. Each probe set correlation with BDNF that passed
the threshold was termed as a "link". It should be noted
that the PCC was calculated between probe set pairs and
not between gene-name pairs. Thus, when more than one
probe set-pair was associated with the same gene-pair we
excluded all the links except the one with the highest PCC
value.

Co-expression link confirmation
We defined a "co-expression link confirmation" as a re-
occurrence of links in multiple subsets. In order to avoid
artifacts and biologically irrelevant links, we performed
link confirmation to select the genes that were correlated
with BDNF in three or more subsets [15]. It should be
noticed that systematic differential expression within a
subset could result in high PCC values. However, high

PCC values in this case do not reveal any relationship
between genes and represent a by-product of the differen-
tial expression of genes within a heterogeneous subset. We
used a minimum between 1000 and 10% of all the probe
sets within the subset as a threshold. Subsets that yielded
more co-expression links between BDNF and other genes
than an arbitrary threshold were excluded from further
analysis. Thus, 5% of all the subsets were excluded.

Probe set re-annotation and ortholog search
Prior to the identification of the links that are conserved
between human, mouse and rat, we transformed the
probe set-pair links to gene-pair links. We used g:Profiler
[26] to transform the probe set names to Ensemble gene
names (ENSG). However, since many probe sets are cur-
rently related to the expressed sequence tags (ESTs), not
all the probe sets could be mapped to the known genes
using g:Profiler. For each dataset, we used its annotation
file (see: ftp://ftp.ncbi.nih.gov/pub/geo/DATA/annota
tion/platforms/). To assign Ensemble gene names to the
"unmapped" probe sets, we obtained the probe set
sequence identifier (GI number) using the annotation file.
Then, we retrieved RefSeq accession for each GI number
from NCBI database. Finally, we continued with a best-hit
blast approach for all three species.

Co-expression conservation and g:Profiler analysis
By performing a co-expression conservation analysis we
identified the links that have passed prior filters (PCC
threshold and link confirmation) and are conserved
among human, mouse and rat.

Genes which co-expression with BDNF was found to be
conserved between human, mouse, and rat constituted
the input list for the g:Profiler. g:Profiler http://
biit.cs.ut.ee/gprofiler/[26] is a public web server used for
characterizing and manipulating gene lists resulting from
mining high-throughput genomic data. It detects gene-
ontology categories that are overrepresented by the input
list of genes or by sorted sublists of the input. g:Profiler is
using the "Set Count and Sizes" (SCS) method to calculate
p-values [26].

Correlated genes' interactions
We used iHOP resource (Information Hyperlinked over
Proteins, http://www.ihop-net.org/) [30] to find reports
in the literature about known interaction between BDNF-
correlated genes. iHOP generates a network of genes and
proteins by mining the abstracts from PubMed. A link in
such a network does not mean a specific regulatory rela-
tionship, but any possible interaction between two genes
(such as protein activation, regulation of transcription, co-
expression, etc). Each reference was verified manually to
ensure the citation of valid interactions.
Page 15 of 20
(page number not for citation purposes)

ftp://ftp.ncbi.nih.gov/pub/geo/DATA/annotation/platforms/
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/annotation/platforms/
http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/
http://www.ihop-net.org/


BMC Genomics 2009, 10:420 http://www.biomedcentral.com/1471-2164/10/420
Motif discovery
We clustered BDNF-correlated genes according to their tis-
sue-specific expression using gene expression information
available in the TiProD database [51] (BDNF gene was
included in every cluster). The TiProD database contains
information about promoter tissue-specific expression for
human genes. For each gene the list of tissues where the
gene expression has been detected can be obtained from
TiProD together with the tissue specificity score. For each
gene we extracted information on tissue expression,
selecting tissues with specificity score higher than 0.2.
Each tissue was assigned a category according to its anat-
omy and function and the genes expressed in correspond-
ing tissues were clustered into CNS, peripheral NS,
endocrine, gastrointestinal or genitourinary cluster. Then,
we searched for combinations of over-represented TFBS
among the list of correlated genes, as well as the tissue
clusters discovered by TiProD.

We used DiRE http://dire.dcode.org/[52] and CONFAC
http://morenolab.whitehead.emory.edu/[53] tools for
the discovery of TFBSs in the conserved co-expressed
genes. DiRE uses position weight matrices (PWM) availa-
ble from version 10.2 of the TRANSFAC Professional data-
base [105]. In DiRE, up to 5000 background genes can be
used. Only those TFBSs are extracted that occur less fre-
quently in 95% of permutation tests than in the original
distribution (corresponding to a p-value < 0.05 to observe
the original distribution by chance) and that corresponds
to at least a twofold increase in their density in the original
distribution as compared with an average pair density in
permutation tests. To correct for multiple hypothesis test-
ing, the hypergeometric distribution with Bonferroni cor-
rection is used in the DiRE tool [106]. For each discovered
TFBS DiRE defines the 'importance score' as the product of
the transcription factor (TF) occurrence (percentage of tis-
sue-specific TF with the particular TFBS) and its weight
(tissue-specificity importance) in a tissue-specific set of
candidate TF. Thus, the importance score is based on the
abundance of the TFBS in tissue-specific TF and on the
specificity of the TF that contain the particular TFBS.

Conserved transcription factor binding site (CONFAC)
software [53] enables the high-throughput identification
of conserved enriched TFBSs in the regulatory regions of
sets of genes using TRANSFAC matrices. CONFAC uses the
Mann-Whitney U-test to compare the query and the back-
ground set. It uses a heuristic method for reducing the
number of false positives while retaining likely important
TFBSs by applying the mean-difference cutoff which is
similar to the use of fold change cutoffs in SAM analyses
[107] of DNA microarray data [53]. According to the data
provided by CONFAC, 50 random gene sets were com-
pared to random sets of 250 control genes. Only one TFBS
exceeded 5% false positive rate for the set of 250 random

control genes that we used in our analysis with the param-
eters advised by the authors [53]. We used promoter
sequences of BDNF-correlated genes and the sequences of
BDNF promoters, exons, introns and the 3'UTR for the
analysis. Matrix Similarity cut-off 0.85 and Core Similarity
cut-off 0.95 were used for motif discovery; and the param-
eters recommended by authors - for Mann-Whitney tests
(p-value cutoff 0.05 and mean-difference cutoff 0.5) [53].

Evolutionary conservation across mammals was con-
firmed manually for the 5-nucleotide core element of each
TFBS discovered in the BDNF gene using UCSC Genome
Browser [108].
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Additional file 1
BDNF probe sets. Affymetrix microarray probe sets for BDNF gene. 
BDNF probe set target sequences are given for each platform type that was 
used in the co-expression conservation analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-420-S1.xls]

Additional file 2
Microarray datasets. Datasets that passed non-specific filtering and were 
used in the analysis (38 human microarray datasets, 24 mouse datasets 
and 18 rat datasets). Each dataset was divided into subsets (disease state, 
age, agent, etc) according to experimental annotations. When possible, 
subsets were subdivided further (marked by *). Experiments were classi-
fied based on their description and the tissue origin. GDS refers to GEO 
Datasets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-420-S2.xls]

Additional file 3
Subsets. Dataset: GDS1018/1368678_at/Bdnf/Rattus norvegicus. 
Expression profiling of brain hippocampal CA1 and CA3 neurons of 
Sprague Dawleys subjected to brief preconditioning seizures. According to 
the dataset annotation, dataset could be divided into three subsets by cell 
type (A) or into two subsets by protocol (B). In addition, subsets could be 
subdivided further into cell type.protocol sub-subsets: CA1 pyramidal neu-
ron.control, CA1 pyramidal neuron.preconditioning seizure, CA3 pyram-
idal neuron.control, etc. After filtering, subset containing less than eight 
samples (CA3 pyramidal neuron.preconditioning seizure) was excluded 
from the analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-420-S3.pdf]
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