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Abstract

Background: Linkage disequilibrium is defined as the non-random associations of alleles at different loci, and it

occurs when genotypes at the two loci depend on each other. The model of genetic hitchhiking predicts that strong

positive selection affects the patterns of linkage disequilibrium around the site of a beneficial allele, resulting in

specific motifs of correlation between neutral polymorphisms that surround the fixed beneficial allele. Increased levels

of linkage disequilibrium are observed on the same side of a beneficial allele, and diminish between sites on different

sides of a beneficial mutation. This specific pattern of linkage disequilibrium occurs more frequently when positive

selection has acted on the population rather than under various neutral models. Thus, detecting such patterns could

accurately reveal targets of positive selection along a recombining chromosome or a genome. Calculating linkage

disequilibria in whole genomes is computationally expensive because allele correlations need to be evaluated for

millions of pairs of sites. To analyze large datasets efficiently, algorithmic implementations used in modern population

genetics need to exploit multiple cores of current workstations in a scalable way. However, population genomic

datasets come in various types and shapes while typically showing SNP density heterogeneity, which makes the

implementation of generally scalable parallel algorithms a challenging task.

Findings: Here we present a series of four parallelization strategies targeting shared-memory systems for the

computationally intensive problem of detecting genomic regions that have contributed to the past adaptation of the

species, also referred to as regions that have undergone a selective sweep, based on linkage disequilibrium patterns.

We provide a thorough performance evaluation of the proposed parallel algorithms for computing linkage

disequilibrium, and outline the benefits of each approach. Furthermore, we compare the accuracy of our open-source

sweep-detection software OmegaPlus, which implements all four parallelization strategies presented here, with a

variety of neutrality tests.

Conclusions: The computational demands of selective sweep detection algorithms depend greatly on the SNP

density heterogeneity and the data representation. Choosing the right parallel algorithm for the analysis can lead to

significant processing time reduction and major energy savings. However, determining which parallel algorithm will

execute more efficiently on a specific processor architecture and number of available cores for a particular dataset is

not straightforward.
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Background
Introduction

Positive selection is the tendency of beneficial traits to

increase in prevalence (frequency) in a population and

is the driving force behind adaptive evolution [1]. The

selective sweep theory and the genetic hitchhiking model

[2] can be used to identify traces of positive selection by

detecting regions of reduced genetic variation (which are

said to have undergone a selective sweep. A trait is con-

sidered beneficial when the following two requirements

are met: i) it must increase the probability of survival and

reproduction of the organism, and ii) it must be heri-

table, i.e., it can pass to the organism’s offspring. When

these requirements are satisfied, population genetics the-

ory predicts that the frequency of this trait will increase

in the population. In modern genetic analyses, traits are

the various forms of a gene (alleles). For instance, if we

simplistically assume that the color of the eyes is con-

trolled by a single gene only, then the various eye colors

are determined by the alleles of this gene. Because a ben-

eficial allele increases the fitness of the organism carrying

it, its frequency will increase, and eventually all individu-

als of the population will possess it (the allele has reached

fixation). Physically, alleles are located on chromosomal

regions. Thus, on a chromosomal region, both a beneficial

allele and alleles that do not affect fitness (neutral alle-

les) may be found. Given that entire chromosomal regions

can potentially be inherited at once, beneficial alleles are

often physically linked to several neutral ones, leading

to the increase in frequency of linked neutral mutations

near the site of the beneficial allele. Neutral alleles can

also reach fixation, thus reducing the amount of poly-

morphism (number of single nucleotide polymorphisms,

SNPs) near the beneficial mutation (by definition, fixation

is monomorphic), and causing a selective sweep.

Selective sweep detection has theoretical significance

and practical applications. For instance, it can shed light

on the long-standing debate regarding the importance

of adaptive and non-adaptive forces in shaping genetic

polymorphisms [3]. Furthermore, it facilitates the detec-

tion of drug-resistant mutations in pathogens (e.g., HIV

[4, 5]) that could reveal potential reasons for treatment

failures [6] and lead to the design of more effective drug

treatments.

Nowadays, the developments in DNA sequencing tech-

nologies, such as next-generation sequencing (NGS), are

steadily contributing to an accelerating accumulation of

molecular sequence data, because entire genomes can

be rapidly and accurately sequenced in a cost-effective

way [7]. Furthermore, the field of bioinformatics has

many computationally demanding kernels1 that typically

require prohibitively long processing times for the anal-

ysis of large-scale datasets available today. This issue

has attracted the attention of the computer engineering

community to such a great extent that the well-known

Smith-Waterman pairwise sequence alignment algorithm

[8] frequently serves as one of the test applications to

demonstrate new engineering concepts in accelerator

platforms. Additionally, several other compute- and/or

memory-intensive bioinformatics kernels have been effi-

ciently executed on emerging technologies such as multi-

core central processing units (CPUs) [9–12], graphical

processing units (GPUs) [9, 13], and field programmable

gate arrays (FPGAs) [14–16]. The increased computa-

tional demands of the kernels used, in combination

with the rapidly increasing pace at which genomes are

sequenced today, generate an apparent challenge: how to

devise new algorithmic solutions to effectively exploit new

emerging technologies and eventually boost the capacity

of modern processing architectures to keep up with the

molecular data avalanche.

To this end, a software addition to the selective sweep

detection computing landscape is the open-source pro-

gram OmegaPlus [17], which has optimized parallel

implementations for the analysis of genomic datasets of

various shapes (dimensions), resulting from the varying

number of sequences and SNPs. OmegaPlus captures

linkage disequilibrium (LD) patterns of selective sweeps

using the ω statistic [18], by analyzing SNPs in intra-

species multiple sequence alignments (MSAs), essentially

n × m data matrices that contain n DNA sequences of

length m nucleotides each (also called alignment sites).

The computational kernel of OmegaPlus is optimized for

memory consumption, thus enabling the analysis of very

large datasets on workstations with limited resources,

such as personal computers. It relies on a computational

approach that divides a dataset into a user-defined num-

ber of genomic regions and computes the ω statistic at the

center of each region.

Before the release of OmegaPlus version 3.0.0 (January

2015), three parallelization alternatives for shared-

memory systems were available: (i) a fine-grained algo-

rithm that deploys all threads for the processing of a

single genomic region, (ii) a coarse-grained algorithm that

assigns a group of neighboring genomic regions to each

thread, and (iii) a multi-grained algorithm [19] in which

the master thread monitors the progress each thread

has made with the assigned group of regions, and peri-

odically directs all available threads (threads that have

finished analyzing their initially assigned group using

the coarse-grained algorithm) to assist, using the fine-

grained approach, the slowest thread at that particular

time. With the release of OmegaPlus v. 3.0.0, a new par-

allel algorithm is available, which implements a generic

‘offload-compute’ paradigm that organizes the LD calcu-

lations into chunks based solely on the available memory

on the system, i.e., ignoring the genomic region bor-

ders, and carries out an iterative two-step procedure of
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LD calculations (the ‘offload’ step) followed by ω statistic

calculations (the ‘compute’ step). All parallelization alter-

natives yield identical results, thus allowing performance

to be improved without compromising the accuracy of the

sweep detection method.

In this work, we present the aforementioned new

generic parallel algorithm that relies on the offload-

compute paradigm and conduct a thorough performance

evaluation of all four available parallel alternatives. Fur-

thermore, we assess the sensitivity and accuracy of

OmegaPlus over other methods and tools that can be

used for selective sweep detection via a series of sim-

ulated runs. From a performance standpoint, devising

an efficient parallel algorithm for the ω statistic is chal-

lenging because of the variety of possible different input

dataset types and shapes. For instance, a population genet-

ics study may analyze either nucleotide data comprising

a maximum of four possible states, A, C, G, and T,

where one is ancestral and the remaining are derived, or

assume the infinite site model [20], leading to the anal-

ysis of binary data where individuals can either carry an

ancestral state (0) or a derived state (1). Previous experi-

mental results revealed that LD calculations on DNA data

require approximately 7–9 times more operations than on

binary data, therefore significantly increasing the fraction

of time required for LD calculations in comparison to ω

calculations.

Furthermore, standard neutral simulated datasets, i.e.,

datasets of neutral SNPs from constant-size populations,

typically show a more homogeneous SNP density than

datasets with selection, because the area near selec-

tion is characterized by reduced amount of polymor-

phism as predicted by the selective sweep theory [2].

Such SNP imbalance between genomic regions trans-

lates to imbalance between individual per-thread execu-

tion times under the coarse-grained model. Additionally,

the shape of the dataset (sample size and total num-

ber of SNPs) has a major effect on the computation-to-

synchronization ratio of the available parallel algorithms,

leading to significant performance deviations for the same

number of threads, particularly as the number of threads

increases.

The proposed generic algorithm distributes the compu-

tational load to so-called ‘compute groups’ without taking

the borders of each genomic region into strict consider-

ation. This leads to a small number of large monolithic

blocks of computations that are organized into compute

groups of equal size in terms of number of operations.

Therefore, the proposed parallel algorithm achieves bal-

anced load distribution to the threads regardless of the

number of SNPs per candidate genomic region. Addi-

tionally, the generic offload-compute approach leads to

reduced synchronization overhead in comparison with

the previous parallel algorithms, which achieves high

performance when the number of threads increases, even

when small datasets are analyzed. The offload-compute

paradigm implemented in OmegaPlus is inspired by

typical hardware-based acceleration systems where fre-

quent communication/synchronization between a host

processor and the hardware accelerator is reduced (if

not eliminated) and the computational blocks are ide-

ally of the same size in order to achieve high system

performance.

Related work

Major advancements on modeling and statistical analy-

sis for population genetics have been reported in the past

15 years [21–24]. However, high performance computing

(HPC) remained largely underdeveloped before the NGS-

driven data explosion, because of the limited amount

of available population genetics data. More recently, the

increasing number of sequenced genomes triggered the

release of several software tools.

Pfeifer et al. [25] released PopGenome, an R package

for population genetic analyses that can compute a wide

range of statistics, infer parameters, and perform simula-

tions. These can be applied to whole-genome SNP data

and can exploit multiple cores for faster execution. A func-

tion is provided that calculates LDmeasurements for each

pair of SNPs in a dataset, but a full implementation of the

ω statistic is not available.

A variety of studies have focused on method devel-

opment for selective sweep detection. Kim and Stephan

[21] developed a composite maximum likelihood (ML)

framework to detect selective sweeps based on empiri-

cal mutation frequencies of SNPs. This framework was

adapted by Nielsen et al. [22] in the open-source software

SweepFinder, which could analyze whole-genome datasets

for a relatively small number of individuals. SweepFinder

cannot exploit multiple cores and therefore has long exe-

cution times for genome-size analyses. Also, it cannot

analyze alignments comprising more than 1,024 indi-

viduals. Pavlidis et al. [26] released SweeD, which uses

the same maximum likelihood calculation core as the

SweepFinder tool [22]. SweeD has a significantly faster

sequential implementation and an efficient parallel algo-

rithm. Also, SweeD can analyze alignments comprising

tens of thousands of sequences. Additionally, a check-

pointing mechanism allows to resume long-running anal-

yses after system failures or queue timeouts on cluster

systems.

Kim and Nielsen [18] described the LD signature of

a selective sweep and introduced a ML framework and

the ω statistic to detect selective sweeps based on LD.

Pavlidis et al. [27] implemented the ω statistic and com-

bined it with the approach proposed by Nielsen et al. [22]

in a machine learning environment to improve the accu-

racy of the detection process. However, the complexity of
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the ω statistic implementation made the machine learning

approach computationally infeasible on large datasets.

Alachiotis et al. [17] introduced a dynamic programming

(DP) algorithm for the efficient calculation of the ω statis-

tic on large datasets and released the parallel software

OmegaPlus, making the detection of selective sweeps on

whole-genome MSAs with thousands of sequences feasi-

ble in a reasonable amount of time. The following section

describes theω statistic and presents themain algorithmic

optimizations in OmegaPlus.

The LD pattern of selective sweeps

LD is used to capture the non-random association of

states between different SNPs. The level of LD can be

quantified by a multitude of statistics. The most widely

usedmeasure of LD is the coefficient of linkage disequilib-

rium, DLD [28]. Assuming the infinite site model (binary

data), the DLD coefficient is defined as DLD = pij − pipj,

where pij is the frequency of haplotypes that have the state

‘1’ in both SNPs i and j, pi is the frequency of haplotypes

that have ‘1’ in SNP i, and pj is the frequency of haplo-

types that have ‘1’ in SNP j. Given that the range of DLD

depends on the frequencies of the states, normalizedmea-

sures of LD are typically preferred. In this manuscript,

we use the squared correlation coefficient between sites

i and j, r2ij = D2
LD/(pi(1 − pi)pj(1 − pj)), which always

assumes values between 0 and 1. If state ‘1’ of SNP i is

always associated with state ‘1’ of SNP j, then r2ij will be

1. On the other hand, if state ‘1’ of SNP i is associated

with both states ‘1’ and ‘0’ of SNP j, then r2ij will be lower

than 1.

Figure 1 shows the generation of SNP patterns that can

be used for selective sweep detection. It comprises four

MSA snapshots of a population at different times. Open

circles represent neutral mutations and filled circles indi-

cate a beneficial mutation. Snapshot A is the oldest while

snapshot D is the most recent. At some point in time,

a beneficial mutation occurs in the population (snapshot

B). Because this mutation is beneficial, the frequency of

occurrence will increase (snapshot C), and eventually all

individuals will have it (snapshot D). The LD between

pairs of SNPs on the left- and right-hand side of the

selective sweep is high, while LD between SNPs that are

located on different sides of the beneficial mutation is low.

A detailed explanation of the mechanisms that drive the

generation of such SNP patterns near the site of selec-

tion is out of the scope of the present work. An excellent

introduction into the evolutionary processes can be found

in [29].

To compute the ω statistic, assume a total of N sam-

ples and a genomic region of W SNPs that is split into a

left (L) and a right (R) subregion with l and W − l SNPs,

respectively. We represent the states of the input data

with S, where SDNA : {A,C,G,T} refers to DNA data and

SBIN : {0, 1} represents binary data. Initially, all r2sisj values
are calculated as follows:

r2sisj =
(
psisj − psipsj

)2
psipsj

(
1 − psi

) (
1 − psj

) , (1)

where si, sj ∈ S, psi is the number of si states in SNP i

divided by the total number of states N, psj is the number

of sj states in SNP j divided by the total number of states

N, and psisj is the number of sisj pairs of states divided by

the total number of pairs of states N. If S = SBIN , i.e., the

input data are in binary format, then r2ij = r2sisj . For DNA

input data, r2ij is calculated as follows, according to [30]:

r2ij = (vi − 1)(vj − 1)vij

vivj

∑
si,sj∈S

r2sisj , (2)

where vi is the number of existing states in SNP i (vi ≤ 4),

vj is the number of existing states in SNP j (vj ≤ 4), and

vij is the number of valid pairs of states (si, sj ∈ S, i.e.,

not alignment gaps). The ω statistic is then computed as

follows:

ω =
(( l

2

) + (W−l
2

))−1 (∑
i,j∈L r2ij +

∑
i,j∈R r2ij

)

(l(W − l))−1 ∑
i∈L,j∈R r2ij

. (3)

The area between the left and the right subregions

is considered as the center of the selective sweep. The

ω statistic quantifies the extent to which average LD is

increased on each side of the selective sweep (numerator

in Eq. 3) but not across the site of selection (denomina-

tor in Eq. 3). In subgenomic regions, i.e., candidate regions

of limited length (usually some thousands of bases long),

the ω statistic is computed at each interval between two

SNPs as shown in Fig. 2. The length of the genomic region

is based on a parameter provided by the user. The calcu-

lations aim to find the l that maximizes ω by evaluating

Eq. 3 for all possible subregions that lie within the borders

of the candidate region.

A grid of equidistant locations Li, 1 < i < D is con-

structed based on the length of the input dataset. The

parameter D is defined by the user. For each genomic

region (centered at Li), the ω statistic is evaluated inde-

pendently. OmegaPlus initially computes a lower trian-

gular matrix M of the squared correlation coefficients

r2ij between all SNPs i and j. Thereafter, a dynamic pro-

gramming (DP) algorithm is used to calculate
∑

i∈L,j∈R r2ij.
Given a total ofW SNPs in the genomic region, the matrix

M of sizeW (W − 1)/2 is updated as follows:

Mi,j =

⎧⎪⎪⎨
⎪⎪⎩

0 1 ≤ i ≤ W , j = i

r2ij 2 ≤ i ≤ W , j = i − 1

Mi,j+1 + Mi−1,j−
Mi−1,j+1 + r2ij 3 ≤ i < W , i − 1 > j ≥ 0.

(4)
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Fig. 1 A selective sweep in a population. a Neutral mutations (open circles). b A beneficial mutation (filled circle) occurs. c The frequency of the
beneficial mutation increases. d All individuals have the same mutation. The regions on the left and the right side of the selection site (dashed

squares) comprise pairs of SNPs with high LD values. Pairs of SNPs on different sides have low LD

Thereafter, all
∑

i∈L,j∈R r2ij,
∑

i,j∈L r2ij, and
∑

i,j∈R r2ij values
required by Eq. 3 are retrieved fromM.

Typically, the number D of locations Li, 1 < i < D, is in

the order of thousands. This frequently leads to extended

overlapping areas between neighboring genomic regions.

To avoid redundant calculations in such cases, OmegaPlus

uses a data-reuse optimization. Given a matrix Mi that

corresponds to the genomic region Li, the matrix Mi+1

is calculated in two steps. First, values from the lower

n rows of Mi are copied to the higher n rows in Mi+1,

where n is the number of SNPs in the common region

between genomic regions Li and Li+1. Thereafter, the

remaining rows inMi+1 are calculated. This optimization

can achieve up to an order of magnitude faster overall

Fig. 2 Two consecutive calculations of theω statistic at the center (thick vertical line) of a subgenomic region, as defined by the left and right borders.

The dashed squares show the SNPs that are included in each calculation step. Note the additional SNP in the right dashed square in step n + 1
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execution, depending on the number of genomic regions

and the extent of the overlaps [17].

Findings
Parallel algorithms for the ω statistic

Fine-grained algorithm (OmegaPlus-F)
The fine-grained parallel approach deploys all threads for

the analysis of the same candidate genomic region, fol-

lowing the steps in Fig. 3a. Before the analysis of a new

region, the master thread checks whether the data-reuse

optimization can be applied. If the regions are not over-

lapping, thematrixM is fully calculated by parallel threads

and filled with the new squared correlation coefficients.

If there is overlap, the master thread copies the common

values to the appropriate locations for the new region and

only a part of M is calculated in parallel. Thereafter, the

master thread applies the DP algorithm (Eq. 4) to update

M with the summation values required by Eq. 3. The final

step for the analysis of a region entails the parallel cal-

culation of the ω statistic, with each thread computing ω

independently for different l values (see Eq. 3).

A major issue with the performance of the straightfor-

ward fine-grained approach lies in the fact that all threads

analyze a single genomic region: when the number of

sequences is small (up to the order of thousands), the com-

putation of squared correlation coefficients is relatively

fast compared to the thread synchronization overhead.

When the sample size increases, the computation-to-

synchronization ratio improves because the calculation of

the squared correlation coefficients requires more opera-

tions. Nevertheless, the frequent synchronization events

and the small (because of the data-reuse optimization)

number of squared correlation coefficients that need to

be calculated for each genomic region do not allow for

efficient parallel execution unless the sample size is in

the order of tens of thousands. Consequently, the coarse-

and multi-grained alternatives typically outperform the

fine-grained approach.

Coarse-grained algorithm (OmegaPlus-C)
Unlike the fine-grained algorithm, the coarse-grained

scheme (Fig. 3b) organizes the entire dataset into larger

regions and assigns a different region to each thread,

which carries out all ω statistic operations in that region

sequentially. Each region comprises an equal number of

candidate genomic regions, thus eliminating the need for

synchronization during the analysis. Threads synchro-

nize only once, to determine whether the analysis of all

assigned regions is completed.

The coarse-grained approach benefits the most from

the data-reuse optimization because all squared correla-

tion coefficients are calculated by a single thread. How-

ever, the coarse-grained assignment of large regions to

parallel threads suffers from imbalanced load distribution

a b c
Fig. 3 The algorithmic steps of three parallelization strategies in OmegaPlus. a The fine-grained approach to calculate one ω location; b the

coarse-grained approach executed by each thread to analyze a genomic region; c the new parallel algorithm to compute a number k of ω locations.

The wavy arrows indicate execution by multiple threads
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because, although each region consists of the same num-

ber of candidate genomic regions, each individual region

that is scanned for selection contains a different number

of SNPs.

Multi-grained algorithm (OmegaPlus-M)
Themulti-grained algorithm attempts to alleviate the load

imbalance in the coarse-grained approach via a more

intelligent assignment of threads to regions. Initially, the

algorithm is similar to the coarse-grained scheme because

each thread is assigned a large region of equal size (num-

ber of candidate genomic regions) and carries out all

required operations independently. When a thread fin-

ishes processing its initial region, themaster thread, which

has been monitoring the progress that each thread has

made with the assigned region, dynamically decides which

region the available thread must be reassigned to. Then,

the selected region starts being analyzed by multiple

threads following the fine-grained algorithm while the

other regions continue being analyzed by one thread each.

Depending on the overall progress in the regions, the

master thread periodically reassigns threads to another

region in order to achieve a balanced distribution of the

remaining computational load at each particular time.

While the multi-grained scheme typically outperforms

the coarse-grained algorithm, as more threads enter the

fine-grained processing mode, the computational load

per thread decreases and the synchronization overhead

increases. Thus, the load distribution to the threads and

the overall execution time for an analysis are still affected

by the different number of SNPs in the regions.

Generic parallelization (OmegaPlus-G)

Data layout
Initially, the input alignment is stored in an array of 32-bit

unsigned integers by grouping 32 elements at an align-

ment site (0, 1 for binary data, andA,C,G, T for DNAdata)

in each unsigned integer and placing SNPs contiguously

in the array, as shown in Fig. 4. In addition to reducing

memory footprint, such a compact representation of SNPs

facilitates the population count operation required to cal-

culate the squared correlation coefficient between SNPs.

Thereafter, the SNPs are organized into SNP groups of

sizeG, whereG is a granularity factor that affects the ratio

of computation to synchronization among the threads.

Figure 4 also illustrates the arrangement of SNPs into

groups for a genomic region that comprises N SNPs. The

value of G is a constant that was set to 128, based on

an experimental evaluation of the effect of G on the total

execution time. In a series of runs with G values rang-

ing from 8 to 1,024, a significant performance degradation

was observed for values smaller or larger than the cho-

senG. SmallG values reduce the number of computations

between synchronization events and increase the retrieval

time of the computed values during the final ω calcula-

tions. On the other hand, large G values lead to execu-

tion time imbalance among the threads because of very

coarse-grained load distribution, and several redundant

computations between very distant SNPs. SNPs are placed

in groups based on their alignment site index to facilitate

the application of the proposed algorithm directly on the

data layout of the standard OmegaPlus implementation.

Parallel algorithm
The underlying idea of the proposed algorithm is to max-

imize the number of calculations in the parallel sections

of the code while each thread performs computations on

fractions of genomic regions. The algorithmic steps are

outlined in Fig. 3c. Initially, a total of T available SNP

groups is assumed. The value of T is calculated from

a user-defined parameter that provides an upper limit

for the memory overhead induced by the proposed algo-

rithm. As previously mentioned, the SNP-group size G

is fixed to 128 for performance purposes. Consequently,

each genomic region frequently extends to several SNP

groups. Therefore, for a given number T of SNP groups,

the calculation of the ω statistic is possible at only a lim-

ited number of locations Li, 1 < i < k � D, where

D is defined by the user. The borders of the respective k

genomic regions are then analyzed to assemble a ‘compute

list’. Each item in the list is a ‘compute group’. Because of

possible overlaps between neighboring genomic regions,

a data reduction operation on the compute list eliminates

double entries that would otherwise have led to redundant

computations.

A compute group operates on a distinct pair of SNP

groups x and y that belong to the same genomic region,

as illustrated by the square tiles in Fig. 5. Initially, a kernel

function that calculates the squared correlation coeffi-

cient r2ij for a pair of SNPs i and j with i ∈ x and

j ∈ y is invoked G2 times. If x = y, the kernel func-

tion is invoked G2/2 times (compute groups 0, 2, and 4

in Fig. 5) to avoid redundant calculations. When the r2ij
calculations are finished, a tile-aware version of the DP

algorithm (Eq. 4) is applied. A data dependency result-

ing from the DP algorithm imposes a corresponding tile

dependency. Therefore, only the compute groups that

belong to the same diagonal can be calculated in paral-

lel, and each diagonal can be processed only after the one

directly above is computed. In Fig. 5 for instance, com-

pute groups 0, 2, and 4 represent the first diagonal that

can be calculated in parallel. Thereafter, the next diagonal,

comprising compute groups 1 and 3, can be calculated in

parallel.

The final stage of the proposed parallel algorithm entails

the ω statistic calculation at k locations Li, 1 < i < k,

where k is calculated based on the available number

of SNP groups T. For this, we modified the standard
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Fig. 4 All N SNPs in a subgenomic region are mapped to distinct locations in SNP groups of size G. Assuming 32-bit unsigned integers and S
sequences, each SNP occupies t integers (ceiling of S sequences divided by 32). Each SNP is placed in a SNP group based on it’s location i in the

subgenomic region, where f is the index of the first SNP in the subgenomic region of N SNPs

OmegaPlus function that computes the ω statistic at

each location Li to retrieve the
∑

i∈L,j∈R r2ij,
∑

i,j∈L r2ij,
and

∑
i,j∈R r2ij values from the tiled output data. There-

after, all Li locations are distributed to so-called omega

queues based on the total number of SNPs in each queue.

When all Li locations are inserted into an omega queue,

each queue comprises approximately the same number

of SNPs. Therefore, by maintaining a queue per thread

we achieve improved load balance for the final ω statistic

calculations.

The above-mentioned steps are repeated until all loca-

tions Li, 1 < i < D, are analyzed. Figure 6 illustrates an

example of output tiled data for an arbitrary iteration of

the algorithm, the corresponding M matrices, and the ω

locations that can be calculated. Each iteration assumes a

different set of T SNP groups (T = 6 in Fig. 6) and com-

putes the next k locations in the input dataset (k = 4 in

Fig. 6). Note that, although T (number of SNP groups) is

constant among iterations of the algorithm (it relies only

on the available memory resources on the workstation),

the actual number k of Li locations that can be calculated

might vary because of variances in the SNP density among

genomic regions. As already mentioned, each genomic

region extends to several SNP groups. Therefore, SNP

Fig. 5 Two neighboring subgenomic regions Li and Li+1 organized into three SNP groups and the respective compute list that comprises five

compute groups
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Fig. 6 Example of the tiled LD data for an arbitrary iteration of the

generic algorithm along with the corresponding per-regionM
matrices and the ω locations that can be calculated. Here, the

number of SNP groups is T = 6, the pairwise combination of which

leads to the tiled matrixM that comprises 16 tiles (missing tiles

correspond to distant SNPs, as determined by the −maxwin
user-defined argument, and therefore are not computed). The

corresponding number of ω locations that can be calculated in this

iteration is k = 4, i.e., Li to Li+k−1

regions with an increased number of SNPs, for instance,

will occupy a proportionally increased number of SNP

groups, leading to a smaller number k of Li locations that

can be computed based on the available T SNP groups.

Implementation and usage

The generic algorithm is implemented in the OmegaPlus

Linux release version 3.0.0 (available for download at

[31] and [32]) using the OpenMP application program-

ming interface (API) for parallel programming. All pre-

vious parallel implementations used the POSIX standard

for threads, a low-level API that was required to imple-

ment the multi-grained algorithm that exploits both the

fine- and the coarse-grained alternatives. However, the

simplicity of the code for the generic algorithm allowed

deployment of the more portable OpenMP API because

the computational kernel is implemented via two main for

loops, one to traverse all tile diagonals in the tiled matrix

M to process the compute list and one to compute all

omega queues.

To generate the OmegaPlus-G executable that imple-

ments the generic parallel algorithm, one can use the

respective makefile (Makefile.OPENMP.GENERIC.gcc).

A typical analysis requires at least five input arguments:

(i) a name for the run (-name), (ii) an input file (-input),

(iii) the number of ω locations (-grid), and (iv) a mini-

mum (-minwin) and a maximum (-maxwin) border value

to specify the width of each candidate genomic region.

The generic algorithm requires an additional argument

that is provided via the -memLimit command line flag

and represents an upper bound for the memory overhead.

The roles of the minimum and maximum border values

for the processing of genomic regions are illustrated in

Fig. 7.

Regardless of the chosen OmegaPlus algorithm, all runs

generate a report that contains locations in the genome

(at the center of each evaluated region) and the cor-

responding ω scores. To assess whether the reported

OmegaPlus scores are indicative of a selective sweep, a

threshold calculation step is required to determine the

critical OmegaPlus value. All regions that are scored

higher than the critical value are candidates for a selective

sweep.

Threshold calculation is based on the definition of

p-value: the probability of observing equal or higher

value than the maximum observed OmegaPlus value

given that the null hypothesis is true. The null hypoth-

esis is represented by a neutral model that incorporates

an appropriate demographic scenario. In other words,

if the demographic model is known, neutral datasets

Fig. 7 The roles of−minwin and−maxwin. The user defines the length ofminwin (number of bases). This is the minimum region on the left or on the

right of a given location that a sweepmight affect. For example, for−minwin 1000, the SNPs located at least at a distance< 1,000 bp (1,000 bp on the

right, and 1,000 bp on the left) from each grid point will contribute to the calculation of ω value. In this figure, the first ω value that will be calculated

(its position is denoted as ‘location to assess omega’) will include three SNP positions on the left and three SNP positions on the right. Subsequently,

OmegaPlus will gradually include in the calculations all SNPs on the left and right subregions one after the other until the ‘Max left’ and ‘Max right’

borders are reached. ‘Max left border’ and ‘Max right border’ are defined by themaxwin flag. For this position, the highest ω value is reported

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/5/1/s13742-016-0114-9/2720971 by FO

R
TH

 LIBR
AR

Y user on 26 July 2019



Alachiotis and Pavlidis GigaScience  (2016) 5:7 Page 10 of 22

are generated via simulations incorporating the demo-

graphic model. For each simulated dataset, the maximum

OmegaPlus value is calculated, and the threshold value

is defined as the 95th percentile of all maxima. In prac-

tice, however, this approach requires two problems to be

resolved: i) the demographic model is usually unknown,

so it needs to be estimated, and ii) if the region under

study and the recombination rate are large, simulating

neutral datasets becomes challenging. Several approaches

exist for the estimation of the demographic model (e.g.,

the approximate Bayesian computation, ABC; [33]) and

the simulation of neutral datasets (e.g., Hudson’s ms [34]

and msms [35] for full coalescent models, or MaCS [35]

for approximate coalescent models). As an alternative to

simulating neutral datasets, which might be computation-

ally expensive, one may assume that the vast majority

of the dataset under investigation is neutral. This allows

to estimate the threshold value by considering the 95th

percentile of the OmegaPlus values calculated from the

analysis of the specific dataset, an approach that is usually

followed for the analysis of whole-genome datasets.

Performance

Experimental setup
To assess the performance of the parallel algorithms for

LD-based selective sweep detection, we use the open-

source software CoMuS (Coalescent of Multiple Species;

[36]) to generate a series of datasets in a variety of shapes,

with sample size m and number of sites k, where m= (100,

1,000, 10,000, 50,000) and k = (10,000, 50,000, 100,000).

In contrast to Hudson’s ms [34], CoMuS implements the

finite site model, therefore it generates DNA sequence

data. The sample size varies from 100 to 50,000 because

our goal is to test the new parallel algorithm inOmegaPlus

for relatively small datasets that are currently widely used,

and for very large datasets that will become available in

the future. For the number of sites, we use values from

10,000 to 100,000. Such a number of sites corresponds

to a genomic region, i.e., it is smaller than chromosomal

sizes. Simulating longer DNA sequences becomes pro-

hibitively expensive both in terms of computational time

and memory requirements, because of the large amount

of recombination.

We use a workstation with four Intel Xeon X7560 8-

core Nehalem-EX processors running at 2.26 GHz and

128 gigabytes of main memory, as a test platform. All par-

allel OmegaPlus algorithms are evaluated for scalability

with runs of 4, 8, 16, and 32 threads. For all runs, the -grid,

-minwin, and -maxwin arguments are set to 5,000, 1,000,

and 20,000, respectively. Therefore, all analyses compute

the ω statistic at 5,000 locations along the input dataset

with the minimum and the maximum sizes of the candi-

date genomic regions set to 1,000 and 20,000 alignment

sites, respectively.

Typically, the number of candidates for selection

genomic regions that should be evaluated in an input

dataset should be proportional to the width of the dataset,

i.e., the number of alignment sites. Although this is gener-

ally valid for real-world analyses, it would create a bias in

our scalability evaluation experiments. Changing the -grid

argument according to the number of sites k in the input

datasets will maintain the number of SNPs in each region

and the overlap between neighboring regions approxi-

mately constant, while the shape of the datasets will vary

significantly. Therefore, the runtime comparisons will not

capture the effect of the size of candidate regions and the

extent of the overlaps.

Simulated datasets
Initially, we evaluate the scalability of the parallel algo-

rithms on simulated datasets. Figure 8 shows the observed

speedups.

As can be observed in the plots, the coarse- and

multi-grained approaches show poor performance for

limited number of sites (k = 10,000) achieving maxi-

mum speedups of 8.8X and 9.3X on 32 cores, respec-

tively. This results from the small number of SNPs per

group of regions, which decreases as the number of

threads increases, leading to unfavorable computation-to-

synchronization ratios. The fine-grained and the generic

algorithms achieve speedups of up to 19.3X and 22.6X on

32 cores, respectively. Consequently, the fine-grained and

the generic algorithms outperform the coarse- and multi-

grained alternatives, showing even superlinear speedups

for small sample sizes (up to 1,000) and numbers of

threads (up to 8) because of the efficient exploitation of

the cache hierarchy. For instance, when processing the

DNA dataset with 100 sequences and 10,000 alignment

sites (approximately 5,000 SNPs; bottom left of the figure),

OmegaPlus allocates 64 bytes per SNP (4 unsigned inte-

gers per DNA state), allowing the loading of nearly 512

SNPs in L1 cache (32 kilobytes). Because all threads in

the fine-grained model analyze the same region and the

number of regions is large (-grid 5000), the majority of

SNPs that will be required for a large number of consec-

utive overlapping neighboring regions already reside in

L1 cache. The same cache effect is not observed for the

coarse-grained approach because each thread starts ana-

lyzing distant regions. Although each thread’s next region

contains several SNPs that already reside in L1 cache from

the analysis of the previous region, the actual number

of remaining regions that can benefit from SNPs in L1

cache is reduced proportionally to the number of parallel

threads. Furthermore, owing to extensive overlaps and the

small number of SNPs, a large number of redundant LD

calculations may occur as a certain number of overlapping

regions (at the borders of the region groups) are ana-

lyzed by different threads. The multi-grained approach
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Fig. 8 Speedups for the analysis of DNA datasets in different shapes. The sequential OmegaPlus implementation is take as reference for the

calculation of the speedups; F, C, M, and G correspond to the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively

outperforms the coarse-grained alternative and benefits

from the cache effect because threads dynamically switch

to the fine-grained model during processing. Finally, the

generic approach requires only 16 kilobytes of L1 cache

per compute group, leading to the efficient use of the

cache hierarchy during the analysis of the compute list

because the 2G SNPs (G is the granularity factor currently

set to 128) per compute group will reside in L1 cache

and be used in G2 pairwise LD calculations. However, as

the sample size increases the memory requirements per

SNP increase, the benefits from the cache hierarchy are

reduced (towards the top right in Fig. 8), and the fine-

grained approach outperforms the generic algorithm as

a result of a favorable computation-to-synchronization

ratio during the LD calculations.

Tables 1 and 2 provide execution times for DNA and

binary datasets, respectively. Note that all datasets gener-

ated by CoMuS contain DNA data in FASTA format. To

evaluate the performance of the parallel algorithms when

binary SNPs are analyzed, we use the -binary OmegaPlus
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Table 1 Execution times (in seconds) for the analysis of DNA datasets in different shapes

Sequences 100 1,000 10,000 50,000

Sites 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000

OP (1) 158 2,117 2,677 301 3,233 3,883 846 10,486 17,547 2,927 33,592 88,528

F (4) 37 1,143 1,381 61 1,256 1,687 184 3,160 5,011 744 9,438 23,798

C (4) 68 893 949 129 1,096 1,288 520 4,346 6,067 2,576 16,239 30,501

M (4) 43 710 811 95 896 1,135 479 3,626 5,358 2,518 13,172 27,399

G (4) 41 491 636 74 674 1,052 249 3,832 6,280 1,105 13,070 34,983

F (8) 19 790 1,008 34 898 1,136 95 1,880 2,843 394 4,924 12,610

C (8) 40 493 524 91 640 771 474 2,814 3,687 2,508 11,039 18,558

M (8) 27 411 463 70 539 676 450 2,467 3,351 2,458 9,623 17,063

G (8) 21 263 336 37 352 551 132 1,956 3,205 580 6,653 17,713

F (16) 10 649 809 19 700 867 53 1,255 1,812 223 3,003 6,922

C (16) 25 288 308 67 413 473 445 2,063 2,522 2,447 8,537 12,701

M (16) 20 247 270 58 370 428 432 1,953 2,355 2,429 8,114 11,882

G (16) 10 136 171 19 181 283 72 1,063 1,651 319 3,457 9,125

F (32) 9 599 745 16 632 748 46 1,094 1,450 152 2,405 4,009

C (32) 18 174 187 55 289 324 479 1,705 1,985 3,014 7,543 10,041

M (32) 17 168 190 50 286 313 440 1,674 1,999 2,782 7,897 9,566

G (32) 7 83 114 15 127 188 63 567 962 223 2,001 4,814

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively.

The number in parentheses is the number of threads

Table 2 Execution times (in seconds) for the analysis of binary datasets in different shapes

Sequences 100 1,000 10,000 50,000

Sites 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000

OP (1) 151 2,024 2,467 241 2,653 2,535 438 3,442 4,433 777 5,636 11,485

F (4) 39 1,238 1,480 67 1,313 1,569 135 1,664 2,009 252 2,364 4,380

C (4) 64 1,017 1,052 114 1,015 991 195 1,265 1,528 469 2,627 4,360

M (4) 40 701 861 69 796 889 151 1,099 1,398 401 2,205 4,008

G (4) 40 521 624 65 545 652 115 924 1,249 250 1,975 4,395

F (8) 19 795 1,011 32 838 1,002 53 1,012 1,214 134 1,438 2,684

C (8) 36 464 488 64 478 487 132 709 869 373 1,701 2,857

M (8) 23 379 423 41 408 445 105 638 813 335 1,483 2,681

G (8) 20 254 312 32 274 328 59 481 679 144 1,091 2,570

F (16) 10 652 808 17 675 828 33 834 975 97 1,250 2,250

C (16) 20 258 264 39 266 280 95 463 585 320 1,255 2,109

M (16) 16 222 243 30 233 250 84 429 549 306 1,198 2,021

G (16) 10 128 157 16 140 169 35 275 411 97 685 1,664

F (32) 9 598 699 15 623 743 31 764 860 84 1,066 1,919

C (32) 14 147 166 24 158 185 76 338 446 325 1,193 1,990

M (32) 16 137 165 22 161 173 77 337 446 313 1,133 2,064

G (32) 7 86 95 11 91 104 26 193 317 85 504 1,229

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively.

The number in parentheses is the number of threads
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input argument, which enforces a deduction of the align-

ment to a binary representation before the analysis. The

execution time reduction for the same dataset can be con-

siderable as the dataset size increases. For instance, the

sequential analysis of the largest simulated dataset in our

experiments (m = 50,000 and k = 100,000) finished 7.7X

faster by activating binary deduction, reducing the total

analysis time from 24.6 hours to approximately 3 hours.

The maximum ω value calculated based on DNA data

was 1.281763 at location 99,973.78, whereas the respective

values based on binary data were 1.235877 and 99,993.78.

For moderate numbers of alignment sites such as k =
50,000 or k = 100,000, the generic parallel approach

achieves up to 25.5X speedup on 32 cores whereas the

fine-, coarse-, and multi-grained alternatives deliver max-

imum speedups of 22X, 16.8X, and 16.5X, respectively.

Overall, the generic algorithm shows consistent perfor-

mance on various different numbers of cores and is robust

to changes in the dataset shape. Furthermore, because of

the compute-list-based calculation of a significantly larger

number of LD values than the other approaches in a sin-

gle parallel region, the generic algorithm achieves good

performance even when many cores are used to analyze

datasets with limited sample size and number of SNPs.

Human Chromosome 1 from the 1000 genomes project
In addition to simulated datasets, we also evaluate the

parallel algorithms for the scan of a very large real-

world dataset, the Chromosome 1 of the human genome,

available for download from the 1000 Genomes Project

Consortium ([37], last accessed January 9, 2015). This

dataset is in VCF format, which is widely used in next-

generation sequencing projects, and contains the genetic

variation from 2,504 humans, i.e., the sample size to be

analyzed is 5,008 as a result of diploidy. The size of the

input file is 62 gigabytes and comprises 6,195,844 SNPs.

Similarly to previous performance comparisons, we con-

duct a performance evaluation of the parallel algorithms

with runs using 4, 8, 16, and 32 threads, analyzing the

input data from the VCF file as is, i.e., nucleotide data,

as well as binary data, by activating the binary deduction

optimization.

All runs compute the ω statistic at the center of 10,000

candidate regions (-grid) of minimum andmaximum sizes

of 1,000 (-minwin) and 200,000 (-maxwin) sites, respec-

tively. Table 3 contains execution times and Figs. 9 and 10

illustrate the respective speedups. Given the considerable

size of the input file (62 gigabytes), and so as to conduct

an accurate evaluation of the parallel algorithms, the time

required to load the file from the disk to main memory

is not included in the execution times and the calcula-

tion of the respective speedups. All parallel OmegaPlus

implementations use a single thread to load the input file

to main memory before the analysis, a task that required

Table 3 Execution times (in seconds) for the analysis of the

human Chromosome 1 (1000 Genomes project) conducting

calculations based on DNA and binary data

Algorithm (threads) DNA Binary

OP (1) 417,161 44,195

F (4) 108,850 14,057

C (4) 129,712 15,266

M (4) 107,326 12,667

G (4) 115,653 13,474

F (8) 55,025 8,712

C (8) 67,371 8,142

M (8) 54,663 6,992

G (8) 58,341 7,492

F (16) 27,853 5,884

C (16) 37,091 5,145

M (16) 28,316 4,135

G (16) 30,089 4,567

F (32) 17,683 4,911

C (32) 21,043 3,630

M (32) 15,395 2,971

G (32) 17,469 3,262

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the

fine-grained, coarse-grained, multi-grained, and generic parallel algorithms,

respectively

between 80 and 85 min for all runs. However, the time

required for the conversion of the nucleotide SNPs to

binary data (carried out by a single thread as well) is

included. This conversion required 24 min.

As expected, because of the increased sample size

and number of SNPs, all parallel algorithms show com-

parable performance and scale well as the number of

threads increases (Fig. 9). The coarse-grained approach

is the most prone to SNP density imbalance among

regions, which reflects the worse performance compared

with the rest of the algorithms. The large sample size

allows highly favorable computation-to-synchronization

ratio during the LD calculations of the fine-grained algo-

rithm, whereas the multi-grained parallelization, which

has the dynamic switching mechanism between the fine-

grained and coarse-grained approaches, achieves the best

performance because it benefits from both the efficient

fine-grained LD calculations and the balanced workload

per thread. Finally, because of the large number of SNPs in

the dataset and the significantly wide candidate regions,

the generic algorithm requires multiple offload-compute

iterations, while each iteration can compute only a lim-

ited number of ω locations, thus leading to slightly worse

performance than the multi-grained approach while out-

performing the fine-grained approach when 32 threads

are used.
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Fig. 9 Observed speedups for the analysis of the human

Chromosome 1 based on LD computations on nucleotide SNP data

The binary deduction optimization allows between 7X

and 9.4X faster execution, including the time required

to convert the DNA representation to binary (24 min).

However, all parallel algorithms show poor performance

as the number of threads increases (Fig. 10) because of

the significantly reduced computational load per pairwise

LD calculation. For binary analyses, the multi-grained and

the generic algorithms are typically faster than the fine-

Fig. 10 Observed speedups for the analysis of the human

Chromosome 1 based on LD computations on binary SNP data

and coarse-grained approaches because of the hybrid par-

allelization approaches used, which allow them to benefit

from both the coarse-grained execution and the balanced

computational load distribution to the threads, achiev-

ing favorable computation-to-synchronization ratios and

similar execution times per thread.

Converting each SNP from DNA to binary is a non-

deterministic process that leads to loss of information,

because all nucleotide SNPs are now represented by

binary vectors. Figure 11 illustrates the ω values that were

computed based on LD values calculated from nucleotide

SNPs (Fig. 11a) and binary data (Fig. 11b). The plots

appear almost identical and there are no obvious dif-

ferences in the ω statistic values calculated by the two

approaches throughout the dataset (OmegaPlus output

reports available as Additional file 1). In both plots, the ten

highest (i.e., 0.1 %) ω values are highlighted (red circles).

Both analyses detected the maximum ω value at posi-

tion 149,445,280, and the leftmost and rightmost SNPs

in the region that showed the maximum ω were at posi-

tions 149,433,322 and 149,448,635, respectively.When the

SNP data were analyzed as DNA, the maximum ω value

was 396,171.53, whereas when the SNPs were converted

to binary the maximum ω value was 391,617.78. Note,

however, that the sequential DNA analysis required 117.2

hours whereas the binary analysis finished in just 13.6

hours.

The main goal of the Chromosome 1 runs is to com-

pare the scalability of the parallel algorithms and to assess

the efficiency of the OmegaPlus binary-based analysis in

terms of both execution time and accuracy on a large,

real-world dataset. Consequently, using the full dataset

of Chromosome 1, we do not aim to detect selective

sweeps or discuss the biological significance of the find-

ings because the entire dataset represents a mixture of

several populations, thus violating certain assumptions

of OmegaPlus and neutrality tests in general. However,

we analyzed each population separately to demonstrate

the usage of OmegaPlus on subsets of the entire dataset.

Given that this analysis is biologically meaningful and

may provide information related to local adaptation, the

OmegaPlus output reports are available for download

in Additional file 2, and the scores along Chromosome

1 for each population are plotted in Additional file 3.

Furthermore, for each pair of populations, we calcu-

lated the Spearman correlation coefficient between their

OmegaPlus scores to generate the heatmap that is shown

in Fig. 12. The heatmap demonstrates that more closely

related populations are more similar in terms of patterns

of their OmegaPlus scores. This finding probably reflects

the more extensive coancestry of more closely related

populations (e.g., African populations) compared with

more distant populations (e.g., African versus European

populations). Alternatively, it might represent common
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a

b

Fig. 11 Illustration of the ω values reported by OmegaPlus for the analysis of the human Chromosome 1. a SNPs interpreted as nucleotide data

(processed as is from the VCF file); b SNPs represented as binary vectors (-binary option). In both plots, the 10 highest ω values are highlighted. The

DNA analysis took between 7 and 9.4 times longer than the binary analysis

selective pressures between related populations. Further

examination is required, which, however, is beyond the

scope of this work.

Comparisonwith other neutrality tests
A recent study by Crisci et al. [38] assessed the perfor-

mance of various implementations, including OmegaPlus,

to detect selection for different biologically relevant sce-

narios such as population size changes. The findings

revealed that, in terms of power to reject the neutral

hypothesis under both equilibrium and non-equilibrium

conditions, OmegaPlus outperforms all alternative imple-

mentations considered in the study, i.e., SweepFinder [22],

SweeD [26], and iHS [39]. As a complementary com-

parison, we conduct here a performance evaluation of

these tools in terms of analysis time. For this compar-

ison, we use Hudson’s ms [34] to generate simulated

datasets with sample size m = (100, 1,000) and number

of sites k = (10,000, 100,000). Table 4 presents exe-

cution times for sequential and parallel runs with 32

threads.

As can be observed in Table 4, OmegaPlus outper-

forms all other tools for both the sequential and the

parallel runs. Such a comparison is useful for choosing

which software to deploy, particularly for large datasets.

However, these tools are fundamentally different, in terms

of both the methods they implement and/or the type

of selective sweeps they detect. For instance, SweeD

and SweepFinder rely on the composite likelihood ratio

and detect complete selective sweeps (OmegaPlus also

detects complete selective sweeps) by analyzing the site

frequency spectrum (SFS). However, they require a sig-

nificantly larger number of floating-point operations than

OmegaPlus. Further, the iHS algorithm of the selscan

[40] software uses extended haplotypes to detect ongoing

(incomplete) selective sweeps.

Sensitivity and specificity

Experimental setup
To assess the sensitivity and accuracy of OmegaPlus, we

use Hudson’s ms and mssel tools to generate neutral

datasets and datasets with selection, respectively. Both

tools perform coalescent simulations with past demo-

graphic changes. Given the trajectory of a beneficial muta-

tion, mssel simulates datasets under the simultaneous

effect of demography and positive selection. The trajec-

tory of the beneficial mutation is constructed using the

same demographic model as the polymorphic dataset that

it generates. A total of 1,000 replications was performed

for each of the demographic models described in Table 5.
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Fig. 12 A heatmap of the 26 populations in the 1000 Genomes dataset for Chromosome 1. The similarity matrix was calculated using the Spearman

correlation coefficient between the OmegaPlus scores of different populations. Light yellow indicates higher similarity (higher Spearman correlation

coefficient); red indicates less similarity. Populations that are more closely related tend to cluster together. Population abbreviations: ACB, African

Caribbeans in Barbados; ASW, Americans of African Ancestry in SW USA; BEB, Bengali from Bangladesh; CDX, Chinese Dai in Xishuangbanna, China;

CEU, Utah Residents (CEPH) with Northern and Western European Ancestry; CHB, Han Chinese in Beijing, China; CHS, Southern Han Chinese; CLM,

Colombians from Medellin, Colombia; ESN, Esan in Nigeria; FIN, Finnish in Finland; GBR, British in England and Scotland; GIH, Gujarati Indian from

Houston, Texas; GWD, Gambian in Western Divisions in the Gambia; IBS, Iberian Population in Spain; ITU, Indian Telugu from the UK; JPT, Japanese in

Tokyo, Japan; KHV, Kinh in Ho Chi Minh City, Vietnam; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone; MXL, Mexican Ancestry from Los

Angeles USA; PEL, Peruvians from Lima, Peru; PJL, Punjabi from Lahore, Pakistan; PUR, Puerto Ricans from Puerto Rico; STU, Sri Lankan Tamil from the

UK; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeria

The bottleneck models 1–4 were used for the compari-

son between OmegaPlus and a series of summary statis-

tics. Additional simulations (bottleneck models 1–7) were

used to demonstrate the effect of the -minwin parameter

of OmegaPlus. The command lines for both ms and mssel

tools are provided in Additional file 4.

The total length of each simulated genome is assumed

to be 1,000,000 bp. The length value is arbitrary, because

ms and mssel adopt the infinite site model; it is used only

to allow the illustration of the results in a similar way to

real datasets (whose size is finite). The genome was split in

1,000 overlapping windows of length 10,000 bp each. The

Table 4 Execution times (in seconds) for the analysis of simulated datasets using OmegaPlus, SweeD, SweepFinder, and selscan (iHs)

Sequences SNPs Threads OmegaPlus SweeD SweepFinder Selscan (iHS)

100

10,000
1 5.7 124.7 540.4 858.5
32 0.7 4.7 – 38.6

100,000
1 652.9 1,169.0 4,138.1 57,996.9
32 21.7 36.3 – 2,442.1

1,000

10,000
1 7.1 283.5 132,938.2 37,340.9
32 1.3 60.6 – 1,428.8

100,000
1 753.1 1,345.5 135,996.3 433,811.2
32 28.8 74.7 – 14,834.2

The generic algorithm is used for the parallel execution of OmegaPlus. SweepFinder does not use multiple threads
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distance between the starting points of two consecutive

windows (offset) is 1,000 bp. Several summary statistics

were evaluated at each window, for both the neutral and

the selection dataset. To set the significance threshold

for each summary statistic, we performed a parametric

bootstrapping procedure that is often used in selection

scans [22]: for a given demographic model (e.g. bottle-

neck1), we calculated the minimum value of each sum-

mary statistic among the sliding windows. We conducted

1,000 replications for each demographic model, obtaining

1,000 minimum values for each summary statistic. The

significance threshold of each summary statistic was set

as the 5th percentile of its minimum values. Given that we

consider only the minimum values for the calculation of

the threshold value (i.e., the minimum value per replica-

tion), there is nomultiple testing problem that could result

from the number of windows.

Comparisonwith summary statistics
Nowadays, several methods (neutrality tests) exist for

detecting selective sweeps. The majority of such tests

are simple summary statistics whose value is different

between genomic regions that have experienced a selec-

tive sweep and regions that are located far away from

a selective sweep. Some of them, for example, Tajima’s

D [41], Fu & Li D∗ [42], and H′ [43], use information

from the site frequency spectrum. A second class of tools,

such as Hudson’s C [44] and Depaulis and Veuille K &

H [45], use information that is mostly related to link-

age disequilibrium or the polymorphism level. Finally,

there are statistics, for example, θπ [46], whose value is

based only on the polymorphism level. We compared

OmegaPlus with the following statistics: (i) θπ , (ii) H
′, (iii)

Tajima’s D, (iv) Fu & Li D∗, (v) Fu & Li F∗ [42], (vi) Depaulis
and Veuille (1998) H, and (vii) Hudson’s C statistic. θπ

measures the level of nucleotide diversity by calculat-

ing the average number of pairwise differences between

sequences, thus it is expected to be low in windows nearby

a selective sweep. The H′ statistic is defined as H′ =
(θπ − θH)/Var(θπ − θH), where θH [47] is an estimator

of the θ = 4Nμ parameter (μ is the mutation rate per

site per individual) based on the site homozygosity. H′
assumes low values in the proximity of a selective sweep.

Tajima’s D measures a normalized difference between θπ

and Watterson’s θW [48] and assumes low (negative) val-

ues in the proximity of a selective sweep. The same is true

for Fu& Li D∗ and Fu& Li F∗. Depaulis and Veuille Hmea-

sures the haplotype heterozygosity, thus it also decreases

nearby a selective sweep. Finally, Hudson’s C is an esti-

mate of the population recombination rate rho = 4Nc,

where c is the recombination rate per bp per individual.

The estimate is based on the variance of the site frequen-

cies. Thus, its value mostly depends on the level of LD

and assumes low values in the proximity of a selective

sweep.

We compared the sensitivity and the specificity of these

tools to detect selective sweeps for various demogra-

phic models. As sensitivity, we define the percentage of

the replications of each model with selection in which

the value of the neutrality test was more extreme than

the threshold value. As specificity, we calculate the dis-

tance between the reported selective sweep region and the

true target of selection. We tested the performance of the

neutrality tests on several demographic models (model

parameters are provided in Table 5; the command lines

can be found in Additional file 4). The first model is a

constant population size model. For all summary statis-

tics, even the very simple ones, such as θπ , both sensitivity

and specificity are high (Fig. 13). Sensitivity and speci-

ficity are similarly high for mild bottlenecks as well. For

example, for bottleneck2, in which the population size

during bottleneck becomes half of the present population

size, θπ and Depaulis and Veuille H can identify approx-

imately 67% of the sweeps. On average, the sweep loca-

tions reported by these tools were 38 kb and 44 kb away

from the true target of selection, respectively. All other

Table 5 Parameter values of the simulations

Demographic model Beginning time of

bottleneck

Ending time of

bottleneck

Relative population

size during bottleneck

Relative population

size after bottleneck

constant model NA NA NA NA

bottleneck1 0.100 0.1004 0.5 1.0

bottleneck2 0.015 0.0160 0.5 1.0

bottleneck3 0.015 0.0170 0.01 1.0

bottleneck4 0.015 0.0160 0.005 1.0

bottleneck5 0.015 0.0170 0.1 1.0

bottleneck6 0.010 0.0104 0.5 1

bottleneck7 0.010 0.0104 0.1 1

Time is measured backwards, from the present to the past. Thus, the ‘beginning’ of the bottleneck is the most recent time point that the population size changes. Forward in

time, it corresponds to the ‘end’ of the bottleneck
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Fig. 13 Comparison between OmegaPlus and other commonly used summary statistics and neutrality tests. a Sensitivity analysis, i.e., the percentage
of the simulations with selection that are detected as selected by each tool. b Specificity analysis, i.e., the distance of the detected target of selection

from the true target of selection (in kilobases). The darker the cell in the heatmap is, the greater the accuracy is

neutrality tests performed better regarding sensitivity.

OmegaPlus can identify all selective sweeps and its aver-

age reported distance from the true target of selection

is 20 kb (closer than any other neutrality test). For more

severe bottlenecks, the performance of all tools is con-

siderably reduced. For instance, for bottleneck4 (relative

population size during bottleneck is 0.005 of the present-

day population), OmegaPlus can detect only slightly less

than half (48.3%) of the sweeps, at an average distance

of 28 kb from the true target of selection. Other neu-

trality tests performed even worse. For example, Tajima’s

D detected only 18.5% of the sweeps, at a distance of

approximately 70 kb away from the real target of selection.

A study by Pavlidis et al. [27] showed that combining

LD- and SFS-based methods can potentially increase our

ability to detect selective sweeps and reduce the false pos-

itive rate. The rationale behind their approach is that both

LD-based tests (such as OmegaPlus) and SFS-based tests

(such as SweeD) should point to the same location when

a selective sweep has occurred. To facilitate the combina-

tion of results, we have implemented two R scripts that

illustrate both OmegaPlus and SweeD results in a com-

mon plot. Both of the scripts highlight outliers detected by

both OmegaPlus and SweeD. The download links to the R

scripts are provided in the Additional file 4.

The first R script invokes OmegaPlus and SweeD to ana-

lyze a dataset using the same grid size g for both tools. The

g points are defined as gi = (oi, si), where oi and si are the

OmegaPlus and SweeD values of the grid-point i. Given a

significance level a, e.g., 5 %, the threshold value to detect

outliers is defined as the point gc = (oc, sc) for which 5% of

grid-points exist where both OmegaPlus and SweeD val-

ues are greater than oc and sc, respectively. The second R

script calculates the threshold via simulations instead of

relying on the input dataset.

Analysis of input parameters
As already mentioned, to perform an OmegaPlus anal-

ysis, a minimum number of five input arguments are

required. There are also optional parameters that can be

used, such as the minimum number of SNPs required

in a region needed calculate the ω-statistic (-minsnps),

the maximum difference (balance parameter) in terms

of number of SNPs between the left and right windows

(-b), or whether singletons should be considered for the

computations (-no-singletons).
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Some input parameters have minimal effect on the

outcome while others affect the results profoundly. The

-maxwin parameter, for instance, which specifies themax-

imum extent of a sweep, has negligible effect on the results

if it is sufficiently large. For example, for mutation and

recombination rates similar to Drosophila melanogaster,

all -maxwin values greater than 50 kb will give approxi-

mately the same results. This is because it is almost certain

that the ω-statistic maximizes for a window smaller than

the -maxwin value. The balance parameter -b restricts

the left and right windows to be approximately equal in

size. Thus, calculations on significantly uneven windows

in terms of number of SNPs are avoided. Similarly to -

maxwin, the value of -b does not have a great effect on the

results. However, computations become faster when a low

-b value is provided, e.g., less than 10.

The -no-singletons flag is necessary only when we sus-

pect that themajority of singletons result from sequencing

errors. It is not advised to exclude singletons from high

quality datasets because the power to detect selective

sweeps will decrease. Singletons in abundance is essen-

tially the main signature of a selective sweep, and thus

excluding them from the analysis will reduce our ability to

detect a sweep.

The minimum number of SNPs (-minsnps) and the

minimum window size (-minwin) parameters can affect

the results dramatically. Small values, such as 2 for min-

snps, and 500 bp for minwin (when human data are

analyzed), must be avoided. This is because such val-

ues for these parameters increase the stochasticity of the

results significantly. Even under neutrality, it is highly pos-

sible that linkage disequilibrium will assume very high

values in small windows. The minsnps parameter has a

similar effect. It is a challenge to provide a guideline

for setting these parameters because their values should

be dataset-specific. Further, they depend on factors such

as recombination and mutation rate and on the demo-

graphic history of the organism. When the evolutionary

parameter values are such that they increase the vari-

ance along the genome (e.g., small recombination rate,

small population size, bottleneck, or small migration rate),

highminwin and minsnps values are preferable. Typically,

we set minsnps to 5 and minwin to 10 kb for human

data. The corresponding values for Drosophila are usu-

ally smaller. Figure 14 demonstrates the effect of minwin

on the sensitivity and specificity of OmegaPlus. As can

be observed in the figure, small window sizes (e.g., 500

bp) reduce performance. The reason behind this obser-

Fig. 14 Sensitivity and specificity analysis for variousminwin values and bottleneck scenarios. a Heatmap for the percentage of simulations with

selection detected as selected by OmegaPlus for variousminwin sizes and bottleneck scenarios. b Distance of the detected target of selection from

the true target of selection. In a, darker color means higher sensitivity, i.e. more cases of selection are detected. In b, darker color means higher

accuracy, i.e. the detected target of selection is closer to the real target of selection
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vation is that stochasticity increases in small windows,

outperforming the effect of a selective sweep. On the other

hand, largeminwin values (e.g., 50 kb or larger) would also

reduce the performance of the algorithm because they

contain a large proportion of SNPs not affected by the

selective sweep. Determining the optimalminwin value is

not feasible, because the choice is affected by the demo-

graphic model. For example, all minwin values between

10 kb and 50 kb perform excellently for bottleneck1,

whereas a minwin value of 30 kb gives the best results for

bottleneck3.

Conclusions

With the introduction of the generic parallelization alter-

native in the OmegaPlus source code, there are currently

four algorithmic variations that one can use, raising the

question: “Which parallelization alternative is the most

suitable for my datasets?”. A prerequisite to answering

this question is understanding which factors affect per-

formance and which factor is better served by each

parallelization alternative. The three dataset-dependent

factors that have an impact on performance are the sample

size, the total amount of polymorphism, and the dis-

tribution of SNPs along a dataset. The performance of

the fine-grained approach (OmegaPlus-F) improves with

an increasing sample size. This is because OmegaPlus-F

exploits parallelism in narrow genomic regions (maxi-

mum region that a selective sweep can affect), where the

number of SNPs is limited and the only factor that affects

performance is the sample size. In this case, as the sam-

ple size increases the computation-to-synchronization

ratio improves, yielding better overall performance for

OmegaPlus-F. For datasets with increased number of

SNPs, the multi-grained approach in OmegaPlus-M is

expected to deliver higher performance as the number of

SNPs increases because OmegaPlus-M distributes large

genomic regions to different threads and each thread

analyzes a region uninterrupted, thus eliminating any

synchronization overhead. The coarse-grained approach

in OmegaPlus-C typically shows similar behavior to

OmegaPlus-M. However, OmegaPlus-M is less prone to

the distribution of SNPs along the dataset, and as such

it should be preferred over OmegaPlus-C at all times.

Finally, the performance of the new generic approach,

because of the fundamentally different load organiza-

tion and distribution scheme, remains unaffected by the

distribution of SNPs along a dataset. Furthermore, it

exploits a region-based processing scheme, similar to the

multi-grained approach, which achieves improved perfor-

mance for large number of SNPs, and implements block-

ing to improve the computation-to-synchronization ratios

observed in OmegaPlus-F for small sample sizes. Overall,

the generic approach is the preferred approach for small

and moderate size datasets, whereas the n becomes more

powerful for large sample sizes, and the multi-grained

approach for long genomes.

The discussion so far has not taken into considera-

tion the number of cores. Assuming that the dataset size

remains constant as the number of cores increases, each

thread is assigned smaller computational load, thus reduc-

ing the computation-to-synchronization ratio. Although

this is generally the case for all parallel algorithms, the

performance degradation becomes less prevalent with an

increasing dataset size. The generic approach shows the

best performance for increasing number of cores even

when the dataset size is not large enough to justify a large

number of cores; it has the most stable parallel efficiency

over all experiments conducted in this study.

From a performance standpoint, devising an efficient

parallel algorithm that scales well for a large number of

cores is challenging because of the variety of attributes

that the input dataset may have, such as the sample size,

the number of SNPs, the data type (binary data or DNA),

and the SNP density and distribution in the dataset. All

parallel algorithms presented in this study yield qualita-

tively the same results. However, their performance dif-

fers, depending on the aforementioned attributes of the

input data. Thus, choosing the right parallel algorithm for

an analysis can lead to significantly shorter analysis time

and energy savings.

As future work, we intend to further optimize the per-

formance of the kernels used for selective sweep detection

by using SIMD (Single Instruction Multiple Data) vector

intrinsics such as SSE (streaming SIMD extensions) and

AVX (advanced vector extensions), which are available in

all modern microprocessor architectures. Computing LD

between two SNPs is an embarrassingly parallel problem2.

Therefore, boosting single-thread execution with vector

intrinsics and combining highly optimized kernels with

scalable parallel algorithms will lead to significant time

reduction for the analysis of large-scale datasets.

Furthermore, we will be exploring emerging hardware

architectures such as FPGAs and GPUs for offloading

computationally intensive kernels and accelerating LD-

based selective sweep detection. As already mentioned,

the offload-compute paradigm in the generic algorithm is

very suitable for hardware-based acceleration. By appro-

priately limiting the algorithm’s memory overhead (which

is already an input parameter), adapting the memory

layout to achieve coalesced memory accesses on a SIMT

(single instruction multiple threads) architecture, and

devising a simplified OpenCL kernel for LD calculation,

we can make use of the computational power of modern

GPUs.

Detailed profiling of the current ω statistic implemen-

tation in OmegaPlus revealed that significant fraction of

the total execution time (up to 70%) is spent calculating

LD values between SNPs. Therefore, we intend to devise a
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reconfigurable accelerator architecture for computing LD,

and use high-performance communication infrastructure

for hardware acceleration [49, 50] to achieve faster execu-

tion when large-scale datasets are analyzed.

Finally, in addition to the way in which the data-reuse

optimization is currently deployed for LD and ω statistic

calculations, the strategy of data reuse can be exploited

for the computation of other neutrality tests and sum-

mary statistics as well. Although such statistics are not

highly compute-intensive, they typically conduct a large

number of redundant calculations because of extensive

overlaps between neighboring windows. Similarly, the

generic processing scheme applied here in the context

of selective sweep detection can be adapted to oper-

ate on disjoint pairs of genomic regions rather than a

single genomic region (as required for selective sweep

detection). This will enable the efficient evaluation of

long-range LD on whole genomes without conducting

redundant computations or requiring excessive memory

resources.

Availability and requirements
Project name: OmegaPlus , Software for detecting selec-

tive sweeps

Projecthomepage: https://github.com/alachins/omegaplus

http://pop-gen.eu/wordpress/software

Operating systems: Linux
Programming language: C
Other requirements: none
License: GNU GPL

Any restrictions to use by non-academics: none

Availability of supporting data
Supporting materials can be downloaded from the Giga-

Science GigaDB database [51].

Endnotes
1A small number of lines of code that are repeated

many times during program execution.
2Embarassingly parallel is a term used in parallel

computing to describe computational problems that

require little effort to distribute the problem to multiple

tasks.

Additional files

Additional file 1: Human Chromosome 1 OmegaPlus results. This file

contains the OmegaPlus reports and information files for the analysis of the

first chromosome of the human genome (2,504 genomes) for two different

data representations: DNA data (4 bits per allele) and binary data (1 bit per

allele). (ZIP 155 kb)

Additional file 2: Human Chromosome 1 OmegaPlus results per

population. This file contains the OmegaPlus reports and information files

for the analysis of the first chromosome of the human genome per

population (26 populations) for DNA data representation. (ZIP 1120 kb)

Additional file 3: Plots of OmegaPlus scores per population along

Human Chromosome 1. This file contains a series of plots (26 plots, one

per population) of the OmegaPlus scores along the human chromosome 1.

(ZIP 512 kb)

Additional file 4: Command lines for ms andmssel, and download

links to the R scripts. This file contains a document that provides the

command lines for generating the trajectories of the beneficial mutations

in different bottleneck scenarios, the command lines to invoke the software

tools ms and mssel for the simulations, and the download links for the R

scripts to combine and plot OmegaPlus and SweeD scores. (ZIP 56 kb)
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