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RAiSD detects positive selection based on multiple
signatures of a selective sweep and SNP vectors
Nikolaos Alachiotis1 & Pavlos Pavlidis1

Selective sweeps leave distinct signatures locally in genomes, enabling the detection of loci

that have undergone recent positive selection. Multiple signatures of a selective sweep are

known, yet each neutrality test only identifies a single signature. We present RAiSD (Raised

Accuracy in Sweep Detection), an open-source software that implements a novel, to our

knowledge, and parameter-free detection mechanism that relies on multiple signatures of a

selective sweep via the enumeration of SNP vectors. RAiSD achieves higher sensitivity and

accuracy than the current state of the art, while the computational complexity is greatly

reduced, allowing up to 1000 times faster processing than widely used tools, and negligible

memory requirements.
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Positive selection is the major driving force behind adapta-
tion1. Its detection has practical applications such as iden-
tifying drug-resistant mutations in pathogens2 and

designing more effective drug treatments3. Smith and Haigh4

described the effect of genetic hitchhiking as the change in fre-
quency of neutral alleles at loci that are linked to a selected locus.
The beneficial allele at the selected locus increases in frequency
while linked neutral variation diminishes, creating a so-called
selective sweep. Detecting selective sweeps is feasible due to three
distinct signatures that a sweep leaves in genomes. The first sig-
nature is the local reduction of the polymorphism level4. The
second signature suggests a particular shift in the site frequency
spectrum (SFS) toward low- and high-frequency derived var-
iants5. Finally, the third signature is a localized pattern of linkage
disequilibrium (LD) levels6, characterized by high LD on each
side of a beneficial mutation and low LD between loci that are
located on different sides of the beneficial allele.

The currently available methods for selective sweep detection
exhibit various disadvantages. First, each method is designed to
only detect one of the aforementioned sweep signatures, and a
common practice to increase the credibility of an analysis is to
examine the outcome of multiple neutrality tests. This approach,
however, may be suboptimal, as the results of some neutrality
tests may be correlated to a certain extent since they depend on
the same underlying coalescent trees6, or lead to conflicting
outcomes. Second, state-of-the-art detection methods, such as
SweepFinder7, SweepFinder28, SweeD9, and OmegaPlus10,
require input parameters that determine how exhaustively each
tool is going to scan a dataset. The aforementioned imple-
mentations construct a grid of equidistant locations to evaluate,
having implications for the accuracy of the detection process and
the computational efficiency of the applied methods. The user’s
choice of the grid size may lead to execution scenarios where no
grid point is placed in the region of a selected locus, while the
placement of grid points along a genome based on the size of the
evaluated genomic region in base-pairs (bp) may lead to redun-
dant calculations in regions with a reduced number of single
nucleotide polymorphisms (SNPs) (Supplementary Note 1).
Third, software tools exhibit increased computational and/or
memory requirements, even when processing rather small data-
sets. SweepFinder2 required more than 5 h to scan 1000 simu-
lated datasets with 20 sequences and 2215 SNPs on average,
evaluating 1000 grid points, while OmegaPlus failed to process
the first chromosome of the human genome (data available from
the 1000 Genomes project11) on a high-end, off-the-shelf perso-
nal computer with 32 GB of main memory, due to excessive
memory requirements for parsing the input file (65.8 GB). Given
the continuous DNA-sequencing efforts worldwide, software
tools that are incapable of rapidly analyzing large-scale datasets
with reasonable memory requirements and, more importantly,
without compromising the accuracy and the sensitivity of the
detection process will soon be deemed unsuitable for sweep scans
on personal computers.

To this end, we introduce the μ statistic, a composite evaluation
test that scores genomic regions by quantifying changes in the
SFS, the levels of LD, and the amount of genetic diversity along a
chromosome. Despite the fact that the μ statistic relies on three
sweep signatures, its computational requirements are con-
siderably reduced due to a novel, to our knowledge, approach that
relies on SNP vectors to detect SFS and LD changes. A SNP vector
is an entire alignment column, which the μ statistic employs as a
unit, contrary to other neutrality tests that rely on summarized
SNP-vector representations. To compute the μ statistic, we
employ a SNP-driven, sliding-window algorithm that reuses cal-
culated data between overlapping windows, thus considerably
reducing the execution time. Consecutive SNP windows with

variable size in terms of bps are placed along a dataset to allow
exhaustive scans without requiring user-defined parameters. This
achieves increased granularity in SNP-dense regions and avoids
redundant operations in SNP-sparse ones. Consequently, pro-
cessing speed improves without deteriorating the quality of the
results. We release RAiSD (Raised Accuracy in Sweep Detection),
an open-source software tool that combines the computationally
inexpensive sliding-window algorithm for the μ statistic with a
memory-aware approach for parsing input data. RAiSD allocates
a negligible amount of memory (typically few MBs) irrespectively
of the dataset size, thus maintaining overall low memory
requirements. Here, we thoroughly scrutinize RAiSD perfor-
mance on detecting and localizing selective sweeps in non-
equilibrium evolutionary models, presenting results for bot-
tlenecked populations, migration models, recombination models,
background selection, and soft sweeps.

Results
Experimental setup. To evaluate RAiSD, we conducted a series of
test runs employing a total of 113 simulated datasets, with the aim
to assess its power to accurately localize hard selective sweeps,
and its robustness to confounding factors such as population
bottlenecks, migration, recombination heterogeneity, and back-
ground selection. Table 1 provides a succinct description of the
datasets. Each dataset comprises 1000 neutral sets of SNPs, and
1000 sets of SNPs with a sweep and/or a confounding factor,
while the sample size is 20 sequences. We assessed performance
in terms of (i) accuracy (reported distance from the true selection
target), (ii) sensitivity, i.e., the true positive rate (TPR), (iii) false
positive rate (FPR), (iv) success rate of the detection process, i.e.,
the proportion of sweeps detected within a given maximum
distance from the sweep location, and (v) execution time. We
compared RAiSD with state-of-the-art software tools that detect
selective sweeps, such as SweepFinder28, SweeD9, and Omega-
Plus10. Note that RAiSD evaluates locations based on a SNP-
driven, sliding-window algorithm, whereas SweeD, OmegaPlus,
and SweepFinder2 rely on a grid of equidistant locations of user-
defined size. Therefore, to facilitate comparisons, we interpolated
the scores of RAiSD based on the grid locations of the other tools.

Bottleneck models. Employing the software tools ms12 and mssel
(kindly provided by R.R. Hudson), we simulated 60 bottlenecks
(Table 1, datasets 1–60), each comprising both neutral sets of
SNPs and sets of SNPs with demography and selection at the
center of the simulated region. The bottleneck severity (the
relative population size during a bottleneck compared to the
present-day population size) ranged from 0.5 to 0.005, while the
bottleneck duration varied between 80 and 400 generations, and
the beginning of the bottleneck (backward in time) was between
800 and 20,000 generations. To convert coalescent time units to
generations, we assumed that the present-day population size
consists of 50,000 haploid genomes.

Figure 1 shows that all tools perform well when analyzing
datasets with mild bottlenecks. The average reported distance
(Fig. 1a) between the true and the predicted selection targets for
dataset 2, for instance, is as low as 2.5% for SweepFinder2 and
SweeD, and 1.4% for OmegaPlus and RAiSD. Success rates
(Fig. 1b) are also high, with SweepFinder2 and SweeD achieving
29.8%, while OmegaPlus and RAiSD deliver 53.5% and 59.0%,
respectively. Overall, RAiSD and OmegaPlus exhibit comparable
performance, outperforming SweepFinder2 and SweeD for all
datasets, with RAiSD achieving higher accuracy than OmegaPlus
in 40 out of the 60 different bottleneck models, and higher success
rates in 57 out of the 60 execution cases13. More importantly,
RAiSD achieves superior performance for the most severe
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bottlenecks, i.e., datasets 45, 59, and 60. For dataset 60, for
instance, SweepFinder2 and SweeD exhibit totally random
behavior in terms of accuracy: since the true sweep location is
at the center of the chromosome, we expect neutrality tests that
report uniformly distributed positions to detect sweeps at a
distance of 25% of the total chromosome length far from the true
selection target (on average). Both SweepFinder2 and SweeD
report positions at a distance of 27.3%, while OmegaPlus and
RAiSD report positions at distances of 16.0% and 12.9%,
respectively. With respect to the success rate, only 0.8% of the
predicted targets by SweepFinder2 and SweeD are within 10 kb
(1% of the 1-Mb region size) from the true selection target.
OmegaPlus reports that 7.2% of the targets are within the 10-kb
range, whereas RAiSD reports 11.6%.

Figures 1c and 1d illustrate ROC curves for datasets 45 and 60,
respectively. While mild bottlenecks pose little challenge to all the
tools, with TPR values (FPR= 5%) for dataset 2, for instance, as
high as 97.8% for SweepFinder2 and SweeD, and 99.8% for
OmegaPlus and RAiSD, sensitivity drops dramatically as the
bottleneck severity and duration increase (datasets 45 and 60).
RAiSD steadily exhibits higher sensitivity than SweepFinder2 and
SweeD, while yielding similar performance to OmegaPlus. The
respective TPR values (FPR= 5%) for dataset 60 are as low as
4.1% for SweepFinder2 and SweeD, 5.1% for OmegaPlus, and
5.8% for RAiSD, which are indicative of the challenges that severe
bottlenecks pose to sweep detection. It should be noted that in
some of the cases of old and severe bottlenecks (datasets 55–58),
OmegaPlus outperformed RAiSD, presumably due to the fact that
the former examines all genomic regions surrounding a given
location to find the configuration that maximizes the score of the
test.

Migration models. For the models with migration (Table 1,
datasets 61–70), we implemented a continent-island model where
the effective population size of the island is 20 times smaller than
the continent effective population size. The continent acts as a
ghost population, therefore only sequences from the island are
available. The migration rate Mic was set to 3 (Mic ¼ 4Ncmic,
where Nc is the effective population size of the continent and mic

is the proportion of the island population that consists of
immigrants from the continent). The continent and the island
merged into a common population at time tmerge, measured in the
usual coalescent timescale, i.e., in 4Nc generations. In simulations,
the time tmerge ranged from 0.003 to 3, implementing population
divergence models that ranged from very recent (0.003) to very
old (3). Both the population mutation rate θ and the recombi-
nation rate ρ were 2000 for the whole genomic region.

Figure 2 shows that the SFS-based methods (SweepFinder2 and
SweeD) outperform the LD-based one (OmegaPlus), while RAiSD
achieves the highest performance in terms of accuracy (Fig. 2a)
and success rate (Fig. 2b). In fact, the behavior of each tool is
similar irrespectively of the migration parameters. SweepFinder2,
SweeD, and OmegaPlus report sweep locations at average
distances of 31.9%, 30.1%, and 36.1%, respectively, whereas
RAiSD’s accuracy is 18.1%, yielding 2 and 1.66 times more
accurate scans than OmegaPlus and SweeD/SweepFinder2,
respectively. With respect to the success rate, RAiSD reports
sweep locations in the proximity of the true selection target in
5.05% of the cases, whereas the respective rates for SweepFinder2,
SweeD, and OmegaPlus are 1.18%, 1.27%, and 0.26%.

Figures 2c and 2d illustrate ROC curves for datasets 61 and 70,
respectively (the population divergence times are 0.003 for dataset
61 and 3 for dataset 70). The area under RAiSD’s ROC curve is
clearly larger than the respective areas under the ROC curves of
SweepFinder2, SweeD, and OmegaPlus, demonstrating RAiSD’s
higher sensitivity. For low FPR values, such as 1% for instance,
RAiSD’s sensitivity is as high as 36.7%, whereas SweepFinder2,
SweeD, and OmegaPlus achieve 8.6%, 8.7%, and 6.6%, respec-
tively. Overall, the ROC curves demonstrate a plateau behavior,
which suggests that TPR values do not increase any further once a
particular FPR value is reached. Such behavior shows that, as FPR
increases, a large number of runs yield higher scores for neutral
datasets than for datasets with selection. This observation
suggests that (a) the tests used in this study do not detect some
of the signatures generated by the combined effect of migration
and selection, and (b) migration can generate signatures that
resemble those of a selective sweep. In general, migration models
pose severe challenges to existing sweep detection methods,
suggesting that appropriate sweep signatures for migration
models are yet to be found.

Recombination hotspots. Due to the fact that recombination
heterogeneity affects the extent of LD14, we conducted a series of
experiments with recombination hotspots to examine the effect of
recombination heterogeneity on the scores calculated by RAiSD,
SweeD, SweepFinder2, and OmegaPlus. We initially assessed the
effect of recombination heterogeneity on FPR by employing the
software tool msHOT15 (Table 1, datasets 81–101) to simulate
recombination hotspot models with recombination intensity that
ranged from 2 to 100 (relative to the rest of the genome) and
hotspot region sizes of 5 kb and 10 kb, as well as a model with
three hotspot regions of 5 kb each. We set cutoff values (at the
95th percentile) based on neutral models without recombination
hotspots, and examined FPR values using the neutral models with

Table 1 Summarized description of the simulated datasets used for experimental evaluation (see Supplementary Data 1 for
command lines)

Dataset # Sweep type Confounding factor Simulation software Varying parameters Range of values

Hard, complete Bottleneck Hudson’s ms and mssel Severity (−eN) 0.005–0.5
1–60 Duration (−eN) 80–400 (4N0 generations)

Beginning (−eN) 800–20,000 (4N0 generations)
61–70 Hard, complete Migration Hudson’s ms and mssel Population join (−ej) 0.003–3 (4N0 generations)
71–80 Soft, complete None Discoal Drift until frequency (-f) 0.1–1.0
81–101 No sweep Recombination msHOT Hotspot region size (−v)

Hotspot intensity (−v)
5–10 kb
2–100

102–111 Hard, complete Recombination msHOT and mbs Hotspot region size (−v)
Hotspot intensity (−v)

5 kb
2–20

112–113 Hard, complete Background selection SFS_CODE a) Set of SNPs with demography
b) Set of SNPs with demography+
background selection
c) Set of SNPs with demography+
background selection+ sweep
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recombination hotspots. Table 2 reveals that the effect of
recombination hotspots on FPR is minimal. In fact, the average
FPR values for SweepFinder2, SweeD, OmegaPlus, and RAiSD are
3.76%, 3.72%, 5.65%, and 5.01%, respectively.

Furthermore, we assessed the effect of recombination hotspots
on TPR by additionally employing the software tool mbs16 to
simulate recombination hotspot models with a selective sweep
(Table 1, datasets 102–111). We set cutoff values (at the 95th
percentile) based on neutral models with a recombination
hotspot, and examined TPR using recombination hotspot models
with a selective sweep. We employed a series of models with a 5-
kb recombination hotspot region and increasing recombination
intensity that ranged from 2 to 20. We did not consider additional
values for recombination intensity due to the prohibitively long
run times of mbs16. Figure 3 shows the performance of RAiSD
and the rest of the tools when a selective sweep is simulated at the
center of the hotspot region (datasets 102–106), as well as when it
occurs at some distance outside the hotspot region (datasets
107–111). In the case of a sweep occurring inside the hotspot
region, all tools exhibit gradually worsening performance as
recombination intensity increases, with the average distance from
the true target of selection reaching around 25% for all tools

(Fig. 3a, datasets 102–106), and the success rates in terms of
detected sweeps at a distance closer than 1 kb (1% of the
simulated region size) from the true selection target becoming
lower than 1% (Fig. 3b, datasets 102–106). When a sweep occurs
outside the hotspot region, all tools exhibit considerably higher
detection capacity, with RAiSD and OmegaPlus outperforming
SweepFinder2 and SweeD, both in terms of average distance
(Fig. 3a, datasets 107–111) and success rate (Fig. 3b, datasets
107–111). While RAiSD outperforms OmegaPlus in most of the
cases, it should be noted that in the case of the highest
recombination intensity considered here (dataset 111), RAiSD
achieves an average distance of 6.9% and a success rate of 59.10%,
whereas OmegaPlus achieves 6.1% and 59.89%. Figures 3c and 3d
illustrate ROC curves for datasets 102 and 107, respectively,
revealing that all tools achieve higher TPR when a sweep is not
occurring inside the hotspot region. For dataset 102 and FPR 5%,
RAiSD, OmegaPlus, SweeD, and SweepFinder2 achieve TPR of
18.6%, 13.5%, 9.0%, and 9.0%, respectively, whereas for dataset
107 the respective TPR are 48.6%, 47.5%, 23.3%, and 23.2%.

Background selection. The hitchhiking theory4 predicts that a
recent selective sweep reduces the amount of genetic diversity in
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regions with reduced recombination rate17–19. A similar predic-
tion holds for background selection20. To assess the performance
of RAiSD and the other tools/tests in the presence of background
selection, we performed the following experiments. Initially, we
employed a dataset (Table 1, dataset 112) that comprised 1000
neutral sets of SNPs without background selection (to calculate
the top 5% cutoff value per test) and 1000 neutral sets of SNPs
with background selection. We could therefore evaluate the FPR,
since no selective sweeps were present and all results that
exceeded the cutoff value were false positives. Thereafter, we
assessed sensitivity (TPR) by employing a dataset (Table 1,
dataset 113) that comprised 1000 neutral sets of SNPs with
background selection (to calculate the top 5% cutoff value per
test) and 1000 sets of SNPs with both background selection and a
selective sweep. We used the software SFS_CODE21 to simulate
100-kb genomic regions similarly to Maher et al.22. Maher et al.
studied the population genetics of rare variants of genes asso-
ciated with complex diseases using the results of Torgerson
et al.23 to assign a probability of negative selection in coding and
non-coding regions of each gene, the human demographic model
of Tennessen et al.24, and a distribution of selection coefficients
that operate on non-synonymous mutations25.

Table 3 reveals that RAiSD outperforms the rest of the tools in
terms of TPR (97.5%), accuracy (9.94%), and success rate (6.2% of
the reported locations are within 1 kb from the true selection
target), with the respective values for SweepFinder2, SweeD, and
OmegaPlus being considerably lower. RAiSD, however, exhibits
an FPR value that is as high as 37.1%, whereas the respective
values for OmegaPlus, SweeD, and SweepFinder2 are 8.4%, 0.3%,
and 0.3%. This indicates that, when background selection is not
considered for the calculation of the cutoff value, RAiSD is
sensitive to its effect, mainly due to the decrease of genetic
variation. This does not affect the tool’s capacity to detect a
selective sweep when there is one, as long as background selection
is considered in the calculation of the cutoff value. The elevated
FPR indicates that RAiSD is more sensitive to background
selection than the other tools when not controlling for it, which is
expected, since one of the μ statistic factors that contribute to
RAiSD’s high accuracy and TPR is the μVAR. This factor explicitly
accounts for reduced genetic diversity, which, except for being a
signature of a selective sweep, is also expected in the presence of
background selection, and thus it is required to control for it in
order to correctly detect selective sweeps. Using simulations with
background selection but no selective sweeps to specify the cutoff
value, one can control the FPR to the desired level (here 5%), in
which case the proportion of the true selective sweeps that RAiSD
detects is the highest among the rest of the tools.

The effect of model misspecification. The typical evaluation
approach in the current study relies on a cutoff value per neu-
trality test, calculated based on datasets that incorporate all the
evolutionary forces except for a selective sweep. Thus far, we
evaluated the performance of all tools assuming that the demo-
graphic model was correctly estimated. In addition, we assessed
the effect of model misspecification on the detection process by
examining how the FPR and TPR values are affected when the
model used for the calculation of the cutoff value differs from the
one used for the detection of the selective sweep. For this purpose,
we employed the 60 datasets with bottlenecks (Table 1, datasets
1–60), and for each neutrality test, we used the cutoff values that
were calculated based on the neutral sets of SNPs (per dataset) to
evaluate both the FPR and the TPR for all 60 datasets. Figure 4
illustrates the results for RAiSD in a 60 × 60 heatmap (see Sup-
plementary Fig. 1 for SweepFinder2, SweeD, and OmegaPlus),
where the diagonal corresponds to the “ideal” TPR or FPRT
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calculations, i.e., when the demographic model is correctly
inferred. Off-diagonal elements represent the effect of model
misspecification in relation to the corresponding diagonal value.
The value in cell (i, j) in the FPR heatmap, for instance, is the
log10ðFPRij=FPRiiÞ, where FPRij is the FPR when model i is used
for the calculation of the cutoff value and model j is used for the
evaluation of the selective sweep. The number of ‘*’ characters
accompanying the dataset number represents the population size
reduction during the bottleneck phase.

One can observe that when datasets without bottlenecks are
used to calculate the cutoff value and a bottleneck has occurred in
the evaluation datasets, the FPR increases dramatically (even 10
times higher than the 5% expected value; light-colored columns
in the FPR heatmap). Inversely, the FPR decreases dramatically
(below the 5% expected value) when a (severe) bottleneck model
is used for the cutoff value calculation and no (severe) bottleneck
has occurred in the evaluation dataset (black regions in the FPR
heatmap). On the contrary, the TPR is relatively robust to model
misspecification for the majority of the bottleneck models, apart
from the most severe ones. This is due to the fact that true
selective sweep regions are mostly characterized by very high
RAiSD scores, which typically exceed the top 5% cutoff value.
Severe bottlenecks (e.g., datasets 48 and 60), however, can also
produce notably high scores, even in the absence of a selective
sweep. We find that it is beneficial to assume the occurrence of a
bottleneck in the calculation of the cutoff value, since that way the
FPR is controlled near the 5% expected value whereas the TPR
remains largely unaffected.

Soft selective sweeps. RAiSD is designed to detect hard selective
sweeps. To test how RAiSD and the other tools perform for soft
selective sweeps, we generated datasets using the software tool
Discoal26. We simulated 100-kb genomic regions with a soft
selective sweep at the center. The time of fixation (backwards in
time) was set to 0.001 and the selection intensity a was set to 20
(α= 2Ns, where N is the effective population size and s is the
selection coefficient). A total of 10 datasets (Table 1, datasets
71–80) were generated, with the initial frequency at which a
previously neutral allele became beneficial varying from 0.1 to 1.0.
As illustrated in Fig. 5, all tools perform poorly in terms of
accuracy, success rate, and TPR. All tools report around 25%
average distance from the true selection target, which corresponds
to randomly selected locations since the center of the sweep is at
the center of the simulated region. The success rates, in terms of
detected sweeps at a distance closer than 1 kb (1% of the simu-
lated region size), are similarly low (< 12%) for all the tests,
whereas the ROC curves resemble the behavior of a random
classifier.

Complex sweep-detection workflows. Recent studies propose
complex workflows that combine multiple signatures of a selec-
tive sweep. The Composite of Multiple Signals27 (CMS) tool
identifies three distinct signatures of selection: long-range hap-
lotypes, differentiated alleles, and high-frequency derived alleles.
Thus, it does not only employ classical selective sweep signals, but
also signatures of local adaptation (differentiated alleles and long-
range haplotypes). S/HIC28 is a supervised learning software that
first “learns” to recognize patterns of variation from simulations
and then it can be used to classify an unknown genomic dataset
into one of the following classes: (i) neutral, (ii) linked soft, (iii)
soft sweep, (iv) linked hard, or (v) hard selective sweep. Linked
soft and linked hard regions are neutral regions in the proximity
(thus linked) of a soft and a hard selective sweep, respectively.
The power of S/HIC lies in the fact that a mathematical for-
mulation of the likelihood of a sweep (as employed in SweeD and
SweepFinder/SweepFinder2) is not required, since the classifier
relies on simulations to “learn” the properties of each model. This
approach, however, is sensitive to the training process, particu-
larly with respect to model misspecification.

We compared RAiSD (and the other tools) with S/HIC and
CMS, testing S/HIC using simulated and real datasets, and CMS
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Fig. 3 RAiSD evaluation and comparison with SweepFinder2, SweeD, and OmegaPlus, for the models with a recombination hotspot and a selective sweep. a
Detection accuracy, measured as the average distance between the reported locations and the known target of selection (reported as a percentage over
the region length). b Success rate, reported as the percentage of the runs with best-score location in the proximity (closer than 1% of the region length) of
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plots in the form: “D[#]: [sweep location], [center of hotspot], [recombination intensity]”

Table 3 Performance evaluation of SweepFinder2, SweeD,
OmegaPlus, and RAiSD in the presence of background
selection.

SweepFinder2 SweeD OmegaPlus RAiSD

FPR 0.3 0.3 8.4 37.1
TPR 59.9 56.5 21.1 97.5
Distance to sweep 24.47 25.33 26.89 9.94
Success rate 2.0 1.9 2.3 6.2

Values in boldface indicate the best performance per metric
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using real datasets. A major disadvantage of both CMS and S/HIC
is that they contain complex pipelines that can yield their
application cumbersome. For instance, S/HIC ideally requires
separate training for each demographic model. Since a thorough
analysis of S/HIC is beyond the scope of the current study, we
employed the training set provided by the developers of S/HIC28,
which is relevant to the European demography, to test against all
60 bottleneck datasets in our study. Hence, the results of S/HIC
on the simulated datasets were affected by model misspecifica-
tion. Due to the fact that S/HIC classifies subgenomic regions as
either hard sweep, soft sweep, linked hard, linked soft, or neutral,
we superimposed the results of RAiSD and the other tools on the
genome map annotated by the results of S/HIC. We observed that
S/HIC classified several regions in the 60 simulated datasets as
either soft selective sweeps or linked soft, even though no soft
selective sweeps were present (Supplementary Figs. 2 and 3). For
comparisons based on real data, we used the results for the YRI
population of the 1000 Genomes dataset that are provided by the
S/HIC developers (https://github.com/kern-lab/shIC), as well as
the respective ones provided by the CMS27 authors. Due to the
fact that CMS reports scores at certain locations along the
chromosome, we interpolated the results of RAiSD using the
positions of CMS to facilitate comparisons. We found that the
results obtained by RAiSD29 (as well as the other tools tested in
this study) differ considerably from those obtained by S/HIC and
CMS.

1000 Genomes dataset. We analyzed the 1000 Genomes dataset11

using RAiSD to demonstrate the tool’s capacity to handle real
data. It is currently one of the largest publicly available datasets,
both in terms of sample size and number of SNPs, comprising

2504 human samples from 26 populations and a total of
77,832,252 SNPs for the whole set of autosomes (phase 3). We
employed RAiSD to scan each chromosome of the YRI popula-
tion separately, excluding chromosomes X and Y. We also
compared the results of RAiSD29 with the results of OmegaPlus,
SweeD, and SweepFinder2, as well as S/HIC and CMS. Figure 6a
illustrates RAiSD scores per autosome of the YRI population. For
the sake of clarity, the figure shows only the points with the
highest μ statistic values (>99.5%). Centromere regions (coordi-
nates obtained from UCSC30) and their flanking regions, corre-
sponding to 5% of each chromosomal length, were excluded from
the analysis. We provide a short list of the 60 genes with the
highest scores (top 0.05%) from all chromosomes in Supple-
mentary Table 1. Figure 6b–d illustrates the results of SweeD,
OmegaPlus, and RAiSD for the analysis of chromosome 14,
superimposed on the annotated chromosomal map of S/HIC,
whereas Fig. 6e provides a comparison between RAiSD and CMS
for the same chromosome.

Discussion
To the present day, most neutrality-test evaluations solely
examine robustness to bottlenecks. In this study, we showed that
migration also poses major challenges to selective sweep detec-
tion, and that neutrality tests are not robust when applied on
datasets from structured populations. Since it is unrealistic to
assume complete isolation of populations for most species, the
effect of migration on sweep detection needs to be further
examined. Knowing the population structure (and generally the
demographic model) allows to set a significance threshold, thus
helping to control the FPR.
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COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0085-8 ARTICLE

COMMUNICATIONS BIOLOGY |  (2018) 1:79 | DOI: 10.1038/s42003-018-0085-8 | www.nature.com/commsbio 7

https://github.com/kern-lab/shIC
www.nature.com/commsbio
www.nature.com/commsbio


Besides demography, real data pose additional challenges to
selective sweep detection. The motivation for a sliding window
with a fixed number of SNPs derives from the assumption that
the population mutation rate θ and the population recombination
rate ρ remain approximately constant along a chromosome.
Consequently, the fixed-size window would correspond to a
narrower distribution of the number of recombination events as
compared to an unconditional one, and the emerging SNP pat-
terns would mostly be a function of the genealogy. In real data-
sets, however, the assumption may be violated, since some
genomic regions may be recombination hotspots or exhibit higher
mutation rates than others. Furthermore, low-complexity regions
and the centromere make sequencing difficult and should ideally
be excluded from the analysis. To facilitate real-data analyses,
RAiSD reports the values of all three factors that form the μ
statistic. It was empirically determined that the product of these
factors gives superior results. One, however, may opt to employ a
combination of these factors and/or to assign a different weight to
each one of them. For instance, to give a lower weight to μVAR in
the case that θ varies extensively along the chromosome, one may
calculate the μ statistic as ðμVARÞk ´ μSFS ´ μLD, where 0 ≤ k < 1.

The same approach can be followed in the case of background
selection, which reduces the levels of genetic diversity locally in
the genome similarly to a selective sweep31–33. Background
selection has been extensively studied in humans34 and Droso-
phila35. It has been previously asserted that if one considers
adaptation as a fine tuning of genotypes to their environment,
most mutations with detectable fitness effects observed in a well-
adapted population will be deleterious36. RAiSD controls the
effect of background selection via a threshold-adjustment process
that relies on simulations with background selection but no
selective sweeps. The tool’s susceptibility to background selection,
when neglected in the model, is due to the local effect of back-
ground selection on the reduction of polymorphisms, which
affects the μVAR factor.

When real data were analyzed, i.e., the YRI population, RAiSD
showed considerably different behavior than the complex detec-
tion workflow of S/HIC, with high RAiSD values mostly not
corresponding to S/HIC-characterized hard-sweep regions (Sup-
plementary Fig. 4). In fact, S/HIC results were also largely dif-
ferent than the rest of the tools, with S/HIC identifying most of
the chromosomal regions as either soft sweeps or linked-soft. It

should be noted, however, that RAiSD, S/HIC, and SweeD
detected one genomic region in chromosome 14 as a hard sweep.
When S/HIC was used on simulated datasets without soft sweeps
(datasets 1–60), using the European demographic model of
Tennessen et al.24 in the training datasets, at least one linked-soft
or soft-sweep region was identified in more than 25% of the
datasets (Supplementary Figs. 2 and 3). In addition, S/HIC was
greatly affected by demography since the vast majority of neutral
datasets with strong bottlenecks were characterized as having
some sort of selection (linked soft, linked hard, soft, or hard),
whereas a hard selective sweep was only detected in a small
fraction of datasets with a hard selective sweep and a mild bot-
tleneck. This suggests that proper training, particularly with
respect to the demographic model, is a prerequisite for the suc-
cessful deployment of machine learning methods.

Scanning the YRI population resulted in a list of candidate
genes. Even though describing the properties and attributes of
such genes may lead to the story-telling fallacy37, we report for
some of them (among the top 0.05% results over the entire
genome) what has been discovered in the literature (Supple-
mentary Discussion).

Methods
The μ statistic for sweep detection. The μ statistic serves as a measure of positive
selection by assuming high values in regions where variation resembles the sig-
natures that a sweep leaves in a genome. It is constructed by three factors that
collectively account for the expected reduction of variation in the region of a sweep,
the shift in the SFS toward low- and high-frequency derived variants, and the
emergence of a localized LD pattern characterized by high LD on each side of a
beneficial mutation and low LD between loci that are located on different sides of
the beneficial allele (Supplementary Fig. 4). All three factors rely on occurrences of
SNPs and SNP-vector patterns rather than actual computations on SNP data,
achieving considerable performance and scalability gains over state-of-the-art
methods and tools.

Assume a dataset D with S individuals and DSZ SNPs in a genomic region of
length Dln bp, as illustrated in Fig. 7a. Let si denote SNP with index i and li denote
its location. To calculate the μ statistic, assume a fixed-size SNP window W with an
even number of Wsz SNPs that is split into two non-overlapping subwindows of
equal size, L and R. Let PL and PR be the two sets of SNP patterns found in the L
and R subwindows, respectively. Also, let M(si) be the number of individuals with
derived alleles at SNP si. The window W slides on the Dsz SNPs in D with step 1
SNP, calculating a total of Dsz �Wsz þ 1 scores. Let index t of the first SNP in W
also denote the window’s location on the Dsz SNPs. Therefore, for window W at
position t, the μ statistic is computed as follows:

μt ¼ Dln ´ μ
VAR
t ´ μSFSt ´ μLDt ; ð1Þ

71 73 75 77 79

SweepFinder2

SweeD

OmegaPlus

RAiSD

Dataset #

D
is

ta
nc

e 
(%

)
SweepFinder2

SweeD

OmegaPlus

RAiSD

Dataset #

S
uc

ce
ss

 r
at

e 
(%

)

FPR

T
P

R

RAiSD

OmegaPlus

SweeD

SweepFinder2
0

10

20

30

40

50

0

5

10

15

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FPR

T
P

R

RAiSD

OmegaPlus

SweeD

SweepFinder2

dcba

71 73 75 77 79
0.0 0.2 0.4 0.6 0.8 1.0

72 74 76 78 80 72 74 76 78 80

D71: 0.1 D72: 0.2 D73: 0.3 D74: 0.4

D79: 0.9D78: 0.8D77: 0.7D76: 0.6

D75: 0.5

D80: 1.0

Fig. 5 Soft sweeps cannot be detected with hard-sweep detection methods. Even if a mutation starts to be beneficial at frequency 0.1, hard selective sweep
methods behave as random classifiers and are unable to accurately detect the sweep location. a Detection accuracy, measured as the average distance
between the reported locations and the known target of selection (reported as a percentage over the region length). b Success rate, reported as the
percentage of the runs with best-score location in the proximity (closer than 1% of the region length) of the known target of selection. c ROC curve for
dataset 71. d ROC curve for dataset 75. The parameter that varies per model is provided below the plots in the form: “D[#]: [frequency at which mutation
starts being beneficial]”

ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0085-8

8 COMMUNICATIONS BIOLOGY |  (2018) 1:79 | DOI: 10.1038/s42003-018-0085-8 | www.nature.com/commsbio

www.nature.com/commsbio


based on the factors μVARt , μSFSt , and μLDt , which account for the three sweep
signatures. The final μt score refers to genomic location ðltþWsz�1 þ ltÞ=2, which
corresponds to the middle of the distance (in bp) between the leftmost SNP in W
(index t) and the rightmost one (index t þWsz � 1). The first factor, μVARt ,
quantifies the genetic variation in W and is computed as follows:

μVARt ¼ ltþWsz�1 � lt
Dln ´Wsz

; ð2Þ

where lt and ltþWsz�1 are the locations (in bp) of the leftmost and rightmost SNPs in
W, respectively. Thus, the numerator calculates the genomic length of W when the
window is placed at location t. Given the fixed window size in terms of number of
SNPs (Wsz), the value of Eq. 2 is proportional to the window’s corresponding
physical size, which means that the larger the region, the less the variation per bp
for the fixed number of Wsz SNPs. The second factor, μSFSt , captures the expected
shift in the SFS as follows:

μSFSt ¼

P

si2W
½MðsiÞ ¼ 1� þ P

si2W
½MðsiÞ ¼ S� 1�

Wsz
; ð3Þ

where [] is the Iverson bracket notation, which returns 1 if the logical proposition
expressed by the statement in brackets is true. Otherwise, it returns 0. Thus, Eq. 3
assumes high values with an increasing number of singletons (first sum) or SNPs
with S–1 derived variants (second sum) in the window. Finally, the third factor,
μLDt , captures the third sweep signature via Eq. 4, computed as follows:

μLDt ¼

P

si2WL

½si=2PR� ´
P

si2PL
½si=2PR� þ

P

si2WR

½si=2PL� ´
P

si2PR
½si=2PL�

PLsz ´PRsz

; ð4Þ

where PLsz and PRsz
are the sizes of PL and PR in number of SNP patterns,

respectively. Equation 4 exhibits similar behavior with the well-studied ω statistic
that utilizes LD. This is achieved, however, with considerably reduced
computational complexity, by relying on the rationale that a low number of SNP
patterns is expected in a region of high total LD, and vice versa. The numerator
assumes high values with an increasing number of SNP-vector patterns that exist
exclusively in one of the L or R subwindows, accounting for the expected low LD

levels across a positively selected locus. For the example dataset in Fig. 7a, for
instance, we have

P
si2PL ½si=2PR � ¼ 2 (number of SNP patterns in PL that are not

present in PR), and
P

si2PR ½si=2PL� ¼ 1 (number of SNP patterns in PR that are not
present in PL). Also, we have

P
si2WL

½si=2PR� ¼ 3 (number of SNPs in WL that are
not present in PR), and

P
si2WR

½si=2PL� ¼ 2 (number of SNPs in WR that are not
present in PL). The denominator assumes low values with a reduced number of
SNP-vector patterns in each of the L or R subwindows, accounting for the expected
high LD levels on each side of a positively selected site, thus increasing μLDt . For the
PL and PR sets of SNP patterns in Fig. 7a, we have PLsz ¼ 3 and PRsz

¼ 2.
The idea behind the fixed-size SNP window is that the distribution of the

number of recombination events is narrow, conditioning on the number of SNPs.
In a selective sweep region, the window size in bp would critically affect the results.
On one hand, when selection is weak, multiple recombination events may have
occurred in a given bp-based window and the sweep signal may have faded out. On
the other hand, when selection is strong, it is probable that no SNPs are present
and a window of variable size in bp is required (similarly to the window
implementations in OmegaPlus, SweeD, and SweepFinder/SweepFinder2). This
approach, however, becomes computationally expensive when large datasets are
scanned. Adopting the assumption that the population mutation rate θ and the
population recombination rate ρ remain approximately constant along a
chromosome, and fixing the window size in terms of number of SNPs (since the
number of SNPs is a visible measurement of the region), we aim to examine regions
that do not vary wildly in terms of recombination events. Such regions will give
more homogeneous signals for selective sweeps, facilitating their detection.

The algorithm. RAiSD implements an iterative algorithm that conducts a varying
number of sliding-window calculations per iteration. Each iteration entails a two-
step process of fetching a number of SNPs from a secondary storage device, such as
a hard drive, followed by a series of μ statistic computations per window location
on the loaded set of SNPs. Figure 7b depicts the SNP-loading mechanism, as well as
the SNP representation and the data structure on which the μ statistic calculations
are conducted.

Every incoming SNP is initially compared with all existing SNP-vector patterns
in a pattern pool. In the case that the entire pool is scanned and no matching
pattern is found, the incoming SNP is stored in the pool as a new pattern. In every
case, the pattern pool returns the respective SNP-vector pattern index (r in Fig. 7b)
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to the SNP-chunk data structure, along with the corresponding SNP location (s in
Fig. 7b), and the number of derived alleles (d in Fig. 7b). The SNP-vector pattern
pool is of fixed size in terms of memory requirements (1 MB), while the number of
SNP-vector patterns it can accommodate depends on the SNP size, i.e., the number
of samples. The SNP fetching step continues until the pattern pool is full, in which
case the computational step for the μ statistic calculations begins.

As already mentioned, the μ statistic is calculated in a sliding-window manner,
with multiple window iterations required to analyze the entire SNP chunk. The
window step between iterations is 1 SNP, facilitating the sliding of the window on
the three vectors that form the SNP chunk, as well as reducing the complexity for a
data-reuse optimization. A pre-processing step initializes a set of base values for the
three factors of the μ statistic based on the first window location for the chunk, with
each subsequent window iteration simply updating these factors to account for the
window shift. This achieves linear complexity throughout the SNP-chunk
processing step and explains the considerable performance gains over existing
implementations.

The two-step process of loading SNP data to the pattern pool and the SNP-
chunk data structure, followed by the μ statistic calculations on the SNP chunk, is
repeated as many times as required by the input dataset size. Prior to the re-
initialization of the pattern pool with new SNP-vector patterns, a data relocation
process is conducted in order to ensure that windows comprising SNPs that belong
to neighboring SNP chunks are computed correctly. The relocation process is a
prerequisite for correctness, due to the fact that only one pattern pool and one
SNP-chunk data structure are kept in memory at all times, with each two-step
iteration computing on the same memory space. This is one of the key factors that
allow RAiSD to maintain negligible memory requirements irrespectively of the
dataset size.

Execution time. RAiSD and SweepFinder2, unlike SweeD and OmegaPlus, are
sequential software tools, i.e., they do not have the capacity to employ multiple
cores for faster execution. Furthermore, RAiSD execution times do not vary with
input parameters, while this is not the case for the rest of the tools, yielding the
outcome of execution time comparisons highly dependent on user-provided values
for certain input parameters, such as “-s” for SweepFinder2, and “-grid” for SweeD
and OmegaPlus. Such parameters enable faster runs by conducting less exhaustive
scans (a sparser grid of evaluation points), potentially affecting the quality of the
results. Hence, to provide an indicative performance comparison between RAiSD
and the rest of the tools, we measured total execution times for the single-threaded
analysis of a subset of 20 simulated datasets from the total of 113 datasets (Table 1).
On average, over all runs, RAiSD yielded nearly 1000 times faster execution than
SweepFinder2, 628 times faster execution than SweeD, and 32 times faster
execution than OmegaPlus. The actual execution times and speedups, however, are
of little significance since one can execute SweepFinder2, SweeD, and OmegaPlus
arbitrarily faster or slower by reducing or increasing the grid size, respectively. It
should be noted that, for all comparisons presented in this study, the grid-based
tools were executed with a grid size of 1000 evaluation points.

Scanning datasets with RAiSD. RAiSD is a readily available open-source
implementation of the μ statistic. It combines a sliding-window processing algo-
rithm with a memory efficient data parsing approach for ms12 and Variant Call
Format (VCF) dataset formats in a stand-alone software tool implemented in C.
The tool can be compiled using the provided Makefile. The basic input arguments
for an analysis are a name for the run, and a path to the input file. RAiSD provides
a set of parameters to facilitate downstream statistical analyses and calculate the
FPR or TPR when simulated data are processed. By default, the software generates
two output files. The first file contains dataset- and execution-related information,

whereas the second file is a report that comprises the evaluated locations and the
corresponding μ statistic scores. A set of optional parameters can be used to alter
the default output mode, e.g., to generate multiple report files (one per dataset), or
to suppress the inclusion of dataset-separator symbols in the report when a single
input file contains multiple datasets, facilitating subsequent processing steps and
downstream analyses (e.g., using R).

Multi-tool analysis scripts and reproducibility. To facilitate sweep detection
using multiple tools, such as the ones employed for evaluation purposes in this
study, we implemented a series of bash scripts (available for download as part of
the standard RAiSD release). These scripts were employed as-is for the experi-
mental evaluations presented in this article and can therefore serve for reproducing
the experiments. The provided scripts perform the following operations: (a)
download and install the software tools RAiSD, OmegaPlus, SweeD, and Sweep-
Finder2, (b) download and decompress the simulated datasets, (c) launch all
software tools to analyze each dataset (and delete the input files upon completion),
(d) parse the generated reports and create a per-dataset evaluation summary that
comprises attained performance per tool, i.e., sensitivity, accuracy, success rate, and
execution time, and (e) generate bar plots and ROC curves per tool per dataset.

Code availability. The source code of RAiSD and a manual are available through
GitHub at: https://github.com/alachins/raisd. The run scripts are available through
GitHub at: https://github.com/alachins/raisd/tree/master/evaluation.

Data availability. The simulated datasets are available at: https://doi.org/10.6084/
m9.figshare.6324128 (datasets 1–70), and https://doi.org/10.6084/m9.
figshare.6339095 (datasets 71–113). Comparison plots between RAiSD and the
other tools based on datasets 1–60 are available at: https://doi.org/10.6084/m9.
figshare.6340991. Comparison plots between RAiSD and the other tools based on
the YRI population (1000 Genomes project) are available at: https://doi.org/
10.6084/m9.figshare.6353045.
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