
Exploiting Multi-grain Parallelism

for Efficient Selective Sweep Detection

Nikolaos Alachiotis, Pavlos Pavlidis, and Alexandros Stamatakis

The Exelixis Lab, Scientific Computing Group
Heidelberg Institute for Theoretical Studies

Heidelberg, Germany
{Nikolaos.Alachiotis,Pavlos.Pavlidis,Alexandros.Stamatakis}@h-its.org

Abstract. Selective sweep detection localizes targets of recent and strong
positive selection by analyzing single nucleotide polymorphisms (SNPs)
in intra-species multiple sequence alignments. Substantial advances in
wet-lab sequencing technologies currently allow for generating unprece-
dented amounts of molecular data. The increasing number of sequences
and number of SNPs in such large multiple sequence alignments cause
prohibiting long execution times for population genetics data analyses
that rely on selective sweep theory. To alleviate this problem, we have
recently implemented fine- and coarse-grain parallel versions of our open-
source tool OmegaPlus for selective sweep detection that is based on the
ω statistic. A performance issue with the coarse-grain parallelization is
that individual coarse-grain tasks exhibit significant run-time differences,
and hence cause load imbalance. Here, we introduce a significantly im-
proved multi-grain parallelization scheme which outperforms both the
fine-grain as well as the coarse-grain versions of OmegaPlus with respect
to parallel efficiency. The multi-grain approach exploits both coarse-grain
and fine-grain operations by using available threads/cores that have com-
pleted their coarse-grain tasks to accelerate the slowest task by means
of fine-grain parallelism. A performance assessment on real-world and
simulated datasets showed that the multi-grain version is up to 39% and
64.4% faster than the coarse-grain and the fine-grain versions, respec-
tively, when the same number of threads is used.

1 Introduction

Charles Darwin attributed evolution to natural selection among species. Natural
selection occurs when members of a population of species die and are replaced
by offsprings that are better adapted to survive and reproduce in a given en-
vironment. The field of population genetics studies the genetic composition of
populations as well as changes in this genetic composition that are, for instance,
driven by natural selection or genetic drift. The input data for population ge-
netic analyses is a multiple sequence alignment (MSA), essentially an n×m data
matrix that contains n DNA sequences with a length of m nucleotide characters
each (also denoted as columns or alignment sites). Recent advances in sequencing
technology (e.g., Next-Generation Sequencers (NGS)) are currently generating a

Y. Xiang et al. (Eds.): ICA3PP 2012, Part I, LNCS 7439, pp. 56–68, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 57

spectacular amount of molecular sequence data because entire genomes can now
be rapidly and accurately sequenced at low cost. Therefore, we urgently need
to adapt, optimize, and parallelize state-of-the-art tools for population genetic
data analysis such that they scale to large emerging genomic datasets and keep
pace with the molecular data avalanche.

In population genetics, statistical tests that rely on selective sweep theory [1]
are widely used to identify targets of recent and strong positive selection. This
is achieved by analyzing single nucleotide polymorphisms (SNPs) in intra-species
MSAs. A recently introduced method for detecting selective sweeps is the ω statis-
tic [2], which has been implemented by Jensen et al. [3] andPavlidis et al. [4].We re-
cently released OmegaPlus (http://www.exelixis-lab.org/software.html),
a fast sequential open-source implementation of the ω statistic. OmegaPlus
has lower memory requirements than competing codes and can analyze whole-
genome MSAs on off-the-shelf multi-core desktop systems. The kernel function of
OmegaPlus that dominates execution times consist of a dynamic programming
algorithm for calculating sums of so-called linkage-disequilibrium (LD) values in
sub-genomic regions (fractions of the genome).We also developed two parallel ver-
sions: OmegaPlus-F, which parallelizes the dynamic programming matrix com-
putations at a fine-grain level, and OmegaPlus-C, which divides the alignment
into sub-regions and assigns these individual and independent tasks to threads
(coarse-grain parallelism).

The above, relatively straightforward parallelization schemes yielded accept-
able, yet sub-optimal speedups because both approaches exhibit some
drawbacks. Exploiting fine-grain parallelism in dynamic programming matrices,
especially when these are relatively small, can exhibit unfavorable computation-
to-synchronization ratios. This is the case in OmegaPlus-F, despite the fact that
we used an efficient thread synchronization strategy based on busy waiting [5].
Thus, because of the relatively small amount of operations required per dynamic
programming matrix cell, the fine-grain parallel version only scales well if the
input MSA comprises hundreds to thousands of sequences. Unfortunately, the
coarse-grain OmegaPlus-C version also faces a parallel scalability problem: the
variability of the density of SNPs in the MSA can cause substantial load imbal-
ance among threads. Despite the fact that all sub-genomic regions are of the same
size, tasks that encompass regions with high SNP density require significantly
longer execution times. Note that the time required to compute the ω statistic in
a sub-genomic region (a task) increases quadratically with the number of SNPs
in that region. Hence, the parallel performance of OmegaPlus-C is limited by
the slowest thread/task, that is, the thread assigned to the sub-genomic region
with the highest SNP density.

To alleviate this load imbalance issue, we developed a multi-grain paralleliza-
tion strategy that combines the coarse- and fine-grain approaches. The underly-
ing idea is to use fast threads that have completed their task to accelerate the
ω statistic computations of slower threads in a fine-grain way. In other words,
when a thread completes its coarse-grain task early, it is assigned to help the
thread that is expected to finish last at that particular point in time. Multi-grain

http://www.exelixis-lab.org/software.html


58 N. Alachiotis, P. Pavlidis, and A. Stamatakis

parallelization approaches have also been reported in evolutionary placement of
short reads [6] as well as to compute the phylogenetic likelihood function on the
Cell Broadband Engine [7].

The remainder of this paper is organized as follows: In Section 2, we describe
the ω statistic that relies on linkage disequilibria, and we briefly outline the fine-
and coarse-grain parallelization approaches in Section 3. Thereafter, we intro-
duce the multi-grain approach and the implementation of the dynamic helper
thread assignment mechanism (Section 4). A detailed performance evaluation of
the multi-grain version of OmegaPlus is provided in Section 5. We conclude in
Section 6 and address directions of future work.

2 The LD Pattern of Selective Sweeps

The LD is used to capture the non-random association of states at different
MSA positions. Selective sweep theory [1] predicts a pattern of excessive LD in
each of the two alignment regions that flank an evolutionarily advantageous and
recently fixed mutation. This genomic pattern can be detected by using the ω
statistic.

Assume a genomic window with S SNPs that is split into a left and a right
sub-region with l and S− l SNPs, respectively. The ω statistic is then computed
as follows:

ω =
(
(
l
2

)
+
(
S−l
2

)
)−1(

∑
i,j∈L r2ij +

∑
i,j∈R r2ij)

(l(S − l))−1
∑

i∈L,j∈R r2ij
, (1)

where r2ij represents one common LD measure that simply is the squared corre-
lation coefficient between sites i and j. The ω statistic quantifies to which extent
average LD is increased on either side of the selective sweep (see numerator of
Equation 1) but not across the selected site (see denominator of Equation 1).
The area between the left and right sub-regions is considered as the center of
the selective sweep.

In sub-genomic regions, that is, candidate regions of limited length (some
thousand bases/sites long), the ω statistic can be computed at each interval
between two SNPs. S refers to the total number of SNPs, and the goal is to
detect that l which will maximize the ω statistic. When scanning whole-genome
datasets, the analysis becomes more complicated. Evaluating the ω statistic at
each interval between two SNPs can become computationally prohibitive since
hundreds of thousands of SNPs may occur in an entire chromosome. Further-
more, S can not be defined as the overall amount of SNPs along the whole
chromosome. This would also be biologically meaningless because a selective
sweep usually only affects the polymorphic patterns in the neighborhood of a
beneficial (advantageous) mutation.

To process whole-genome datasets, we assume a grid of equidistant locations
Li, 1 < i < k; k is defined by the user, for which the ω statistic is computed.
We also assume a user-defined sub-genomic region of size RMAX that extends
to either side of a beneficial mutation. Such a sub-genomic region represents the



Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 59

genomic area (neighborhood) in which polymorphic patterns may have been af-
fected by the selective sweep. OmegaPlus evaluates the ω statistic for all possible
sub-regions that are enclosed in RMAX and reports the maximum ω value as
well as the sub-region size that maximizes the ω statistic. Figure 1 illustrates
two consecutive steps of the ω statistic calculation at a specific location. The
user-defined RMAX value determines the left and right borders (vertical thin
lines). The ω statistic is computed for all possible sub-regions that lie within
the left and right borders, and the maximum ω value is reported. The process is
repeated for all locations for which the ω statistic needs to be computed.

Location to assess omegaMax left border Max right border

step i+1

Location to assess omegaMax left border Max right border

step i

additional SNP at step i+1

Fig. 1. The process of detecting the sub-regions that maximize the ω statistic for a
given location/selective sweep. The goal is to evaluate the ω statistic at the alignment
position denoted by the thick vertical line. The thin vertical lines to the left and right
side of the thick line indicate the sub-region borders as defined by RMAX . At step
i, only the SNPs enclosed within the dashed-line areas contribute to the calculation
of the ω statistic. At step i + 1, one more SNP that belongs to the right sub-region
contributes to the ω statistic calculation. Calculations are repeated for all possible sub-
regions within the left and right borders (vertical thin lines). The maximum ω value
and the associated sub-region sizes are then reported.



60 N. Alachiotis, P. Pavlidis, and A. Stamatakis

An overview of the computational workflow of OmegaPlus on whole-genome
datasets is provided in Figure 2. The Figure shows the basic steps for the calcu-
lation of an ω statistic value at a given position. The same procedure is repeated
to compute ω statistic values at all positions that have been specified by the user.
Initially, we check whether sub-genomic regions, as defined by RMAX , overlap. If
they overlap, the data is re-indexed to avoid recalculation of previously already
computed values and thereby save operations. Thereafter, all required new LD
values are computed as well as all sums of LDs in the region. Finally, all possible
ω statistic values for the specific region are computed.

between genomic
check for overlap

regions

relocate existing

calculate new

compute sums of

compute omega

repeat for
all omega positions

LD values

LD values

LD values in the region

Fig. 2. The basic algorithmic steps of OmegaPlus for the computation of the ω statistic
at a number of alignment positions requested by the user

An algorithmic advance of the ω statistic implementation in OmegaPlus over
previous approaches is that it deploys a dynamic programming algorithm to
calculate all

∑
i∈L,j∈R r2ij values in a sub-genomic region G. Given S SNPs in

G, a matrix M of size S2/2 is computed as follows:

Mi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 1 ≤ i ≤ S, j = i

rij 2 ≤ i ≤ S, j = i − 1

Mi,j+1 +Mi−1,j+

Mi−1,j+1 + rij 3 ≤ i < S, i− 1 > j ≥ 0.

(2)

Thereafter, all
∑

i∈L,j∈R r2ij ,
∑

i,j∈L r2ij , and
∑

i,j∈R r2ij values required by Equa-
tion 1 are retrieved from the matrix.



Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 61

3 Fine- and Coarse-Grain Parallelizations

The fine-grain parallelization of Equation 2 is implemented by evenly distributing
the independent r2ij calculations (that dominate run-times for computing M)
among all threads. Furthermore, the computation of all ω values at an alignment
position (one ω value for every l in Equation 1) is also evenly distributed among
threads. Figure 3 illustrates how the basic algorithmic steps of Figure 2 are
executed by multiple threads using this fine-grain parallelization scheme. As
already mentioned in Section 1, the computation of the r2ij values is relatively
fast for a small number of sequences compared to thread synchronization times.
Furthermore, if the infinite site model [8] is assumed, the DNA input data can
be transformed into a binary data representation. In this case, r2ij computations

become even faster because computing r2ij on DNA data requires approximately
10 times (on average) more arithmetic operations than on binary data.

. . .

. . .

calculate

values

compute sums of

repeat for
all omega positions

omega
compute

relocate existing

between genomic
check for overlap

regions

LD values

new LD

LD values in the region

Fig. 3. Fine-grain OmegaPlus parallelization

Unlike the fine-grain approach, our coarse-grain scheme is not affected by an
unfavorable computation-to-synchronization ratio since no thread synchroniza-
tion is required. Each thread is assigned a different sub-genomic region (part of
the input MSA) and carries out all ω statistic operations in that region. Note
that we generate as many sub-genomic regions (tasks) as there are threads/cores
available. Thus, threads need to synchronize only once to determine if they have
all completed the analysis of their individual sub-genomic region/task. Figure 4
outlines this coarse-grain parallelization scheme. Since synchronization is only
required to ensure that all tasks have been completed, the performance of the
coarse-grain approach is limited by the run time of the slowest thread/task.
The slowest thread is always the one that has been assigned to the sub-genomic
region with the highest number of SNPs.



62 N. Alachiotis, P. Pavlidis, and A. Stamatakis

. . .. . .

repeat for
all omega positions

relocate existing

between genomic
check for overlap

regions
between genomic
check for overlap

regions

calculate new

compute sums of

compute omega compute omega

compute sums of

calculate new

relocate existing

between genomic
check for overlap

regions

relocate existing

calculate new

compute sums of

compute omega

LD values

LD values

LD values in the region LD values in the region

LD values

LD values LD values

LD values

LD values in the region

Fig. 4. Coarse-grain OmegaPlus parallelization

4 Multi-grain Parallelization

To alleviate the load imbalance caused by regions of high SNP density, we intro-
duce a multi-grain parallelization scheme for reducing the runtime of the slowest
threads/tasks by using a hybrid coarse-grain/fine-grain strategy.

4.1 Underlying Idea

During the first stages, the approach is similar to the coarse-grain scheme, since
each thread is assigned a sub-genomic region of equal size (but potentially dis-
tinct density) and carries out the ω statistic operations independently and se-
quentially within that region. However, when a thread finishes processing its
task/region in the coarse-grain approach, it starts executing a busy-wait until
the last thread has completed its task. As already mentioned, the threads are
only synchronized once via such a busy-wait barrier in the very end. In the
multi-grain implementation, when a thread finishes processing its own task, it
notifies the other threads that are still working on their tasks that it is avail-
able to help accelerate computations. At each point in time, only the slowest
among all threads will obtain help from all other available threads that have
completed their tasks. Henceforth, we use the term temporary workers to refer
to the threads that are available to help others and the term temporary master
to refer to the thread that is getting help from the temporary workers.

The temporary master is responsible to assign temporary thread IDs to the
temporary workers, synchronize them, and release them again after a certain



Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 63

period of time. The temporary master can not use the temporary workers for an
unlimited amount of time since another thread will become the slowest thread
at some later point in time because of the speedup in computations attained
by using the temporary workers. The current temporary master is entitled to
announce the next temporary master. This approach is used to prevent slow
threads to compete for temporary workers and also to avoid excessive occupation
of the temporary workers by the same temporary master. Every temporary master
occupies the workers for the calculation of the ω statistic at 25 positions. This
number has been determined experimentally. Smaller numbers lead to increased
synchronization overhead between threads while larger numbers lead to larger
execution time differences between the slowest threads. While the temporary
master is working with the temporary workers using fine-grain parallelism, the
other threads (on remaining regions) are still operating in coarse-grain mode.
When a temporary master renounces its privilege to use the temporary workers it
returns to coarse-grain parallel mode. Figure 5 outlines the possible operational
states of a thread during the analysis of a MSA using the multi-grain approach.

if not allowed to be
temporary master any more

temporary workers exist 
if next temporary master and 

while no temporary master exists

if temporary master exists

m
aster exists

w
hile tem

porary 

if no temporary master exists

EXIT

are still running

region analyzed and...
if sub−genomic

... other threads

are still running
... no other threads
are still running

... no other threads
if sub−genomic
region analyzed and...

START

while sub−genomic region
not entirely analyzed yet

Busy−wait

as temporary master
Fine−grain parallelism

as temporary worker
Fine−grain parallelism

parallelism

Coarse−grain

tem
porary m

aster
w

hile allow
ed to be

Fig. 5. Processing states of a thread according to the multi-grain parallel model in
OmegaPlus

4.2 Implementation

The multi-grain parallelization and synchronization is implemented via integer
arrays (available array, turn array, progress array). The available array shows
which threads have completed their task and are ready to help others with com-
putations. The turn array indicates which thread is allowed to occupy the tempo-
rary workers at each point in time. Finally, the progress array shows the progress



64 N. Alachiotis, P. Pavlidis, and A. Stamatakis

each thread has made with the analysis of its sub-genomic region. Progress is
measured as the number of calculated Li values (1 < i < k, k is defined by the
user, see Section 2) that lie in the sub-genomic region of the thread.

At a given point in time, the slowest thread is determined by searching for
the highest number of—still uncalculated—Li values in the progress array. The
temporary master scans the progress array and announces which thread shall be-
come the next temporary master by updating the turn array. After each Li value
computation by every unfinished thread, all threads check their corresponding
entry in the turn array to find out whether it is their turn to utilize the temporary
workers. The thread that is allowed to utilize the temporary workers acquires
them by marking them as unavailable in the available array. Then, temporary
thread IDs are assigned by the temporary master to all available workers in
the worker ID array. The temporary master also assigns a temporary thread ID
to itself. The temporary thread ID assignment guarantees correct indexing and
work distribution in fine-grain parallel computations of the M matrix. For the
temporary master, the temporary ID also corresponds to the total number of
parallel threads that will be used to accelerate computations. The temporary
master also informs the temporary workers who the temporary master is via the
master ID array. It is important for the temporary workers to know the ID of
their temporary master such as to avoid storing Li values that correspond to
the sub-genomic region of the temporary master in memory space that has been
allocated by other threads that are still running.

5 Performance Evaluation

The multi-grain parallelization approach is available in the OmegaPlus software
(available underGNUGPLathttp://www.exelixis-lab.org/software.html).
Compiling the code with the appropriate Makefilewill generate the OmegaPlus-
M executable (M stands for Multi). To evaluate performance of the multi-grain
parallelization, we run experiments using both real-world and simulated datasets
and compared execution times among all three parallelization schemes.

To generate simulated data, we used the ms tool by Hudson [9]. We assumed
past population size changes (population bottleneck [10]) and positive recom-
bination probability between base pairs. Simulating population bottlenecks in
conjunction with recombination events increases the variance between genomic
regions [11], thus leading to higher variability in SNP density. The simulated
alignment was generated with the following command:

ms 1000 1 -r 50000 1000 -eN 0.001 0.001 -eN 0.002 10 -s 10000.

Flags -eN 0.001 0.001 and -eN 0.002 10 specify a population bottleneck.
Backward in time (from present to past), the population has contracted to the
0.001 of its present-day size at time 0.001. Then, at time 0.002, the popula-
tion size became 10 times larger than the present-day population size. Time is
measured in 4N generations [9], where N is the effective population size. Regard-
ing recombination (-r 50000 1000), we assume that there are 1,000 potential

http://www.exelixis-lab.org/software.html


Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 65

breakpoints where recombination may occur and the total rate of recombination
is 50,000 (i.e. 4Nr = 50000, where r is the recombination rate between two adja-
cent sites in the alignment and N the effective population size). Furthermore, we
analyzed the X chromosome of 37 Drosophila melanogaster genomes sampled in
Raleigh, North Carolina. The sequences (available from the Drosophila Popula-
tion Genomics Project at http://www.dpgp.org) were converted from fastq to
fasta format using a conversion script (also available at http://www.dpgp.org).
We obtained a DNA alignment comprising 22,422,827 sites with 339,710 SNPs.

As test platform we used an AMD Opteron 6174 12-core Magny-Cours pro-
cessor running at 2.2 GHz. Table 1 provides the total execution times required
by OmegaPlus-F (fine-grain), OmegaPlus-C (coarse-grain), and OmegaPlus-M
(multi-grain) using 2 up to 12 cores for analyzing an average-size alignment
with 1,000 sequences and 100,000 alignment sites comprising 10,000 SNPs. All
OmegaPlus runs calculated the ω statistic at 10,000 positions along the align-
ment assuming that the maximum size of the neighborhood of a beneficial muta-
tion that a selective sweep might affect is 20,000 alignment sites. The sequential
version of the code (OmegaPlus) required 317 seconds to process this alignment
on one core of the test platform.

Table 1. Total execution times (in seconds) of OmegaPlus-F, OmegaPlus-C, and
OmegaPlus-M to analyze an alignment of 1,000 sequences and 100,000 sites (10,000
SNPs). The last two rows show the performance improvement of the multi-grain version
over the fine-grain (Multi vs Fine) and the coarse-grain (Multi vs Coarse) implemen-
tations, respectively.

Parallelization Number of threads
approach 2 4 6 8 10 12

Fine-grain 211.1 156,6 126,0 113.3 107.5 99.5

Coarse-grain 237.8 214,4 164,5 110,7 116.1 101.1

Multi-grain 197.8 135,0 100,3 87,2 77.1 63.8

Multi vs Fine (%) 6.3 13.7 20.3 23.0 28.2 35.9

Multi vs Coarse (%) 16.8 37.0 39.0 21.2 33.6 36.9

The last two rows of Table 1 show the performance improvement over the
fine- and coarse-grain parallel implementations for different numbers of threads.
On this simulated dataset, the multi-grain approach is between 6.3% (using
two threads) and 35.9% (using 12 threads) faster than the fine-grain approach.
In comparison to the coarse-grain parallelization, the multi-grain approach is
between 16.8% (using two threads) and 39.0% (using 6 threads) faster.

The improvement differences (last two rows of Table 1) among runs with dif-
ferent number of threads are caused by changes in the size of the sub-genomic
regions when coarse-grain parallelization is used. Since there are as many sub-
genomic regions as threads available, the number of threads affects the size of
these regions and as a consequence the variability of SNP density among them.
The improving parallel efficiency of OmegaPlus-M with increasing number of

http://www.dpgp.org
http://www.dpgp.org


66 N. Alachiotis, P. Pavlidis, and A. Stamatakis

threads when compared to OmegaPlus-F can be attributed to the effectiveness
of the initial coarse-grain parallel operations on binary data. As already men-
tioned, ω statistic computations on binary data require 10 times less operations
(on average) than on DNA data. Therefore, when the fine-grain parallel scheme
is used to analyze binary data, the synchronization-to-computation ratio is high
in comparison to a DNA data analysis. As a consequence, the coarse-grain par-
allelization is more efficient to analyze binary data than the fine-grain approach.

Table 2 shows the results of the runs on the real-worldDrosophila melanogaster
MSA. Once again, we calculated the ω statistic at 10,000 positions along the
alignment, but this time using a maximum neighborhood size of 200,000 align-
ment sites. On a single core of our test platform, the sequential version re-
quired 1,599.8 seconds. Once again, OmegaPlus-M outperformed OmegaPlus-F
and OmegaPlus-C in all runs with different number of threads. OmegaPlus-M
yielded parallel performance improvements ranging between 22.4% and 64.4%
over OmegaPlus-F and between 1.0% and 17.7% over OmegaPlus-C.

Unlike the results on the simulated dataset, the performance continuously
improves on the real dataset as we use more threads. This is because the ac-
tual number of SNPs in the Drosophila melanogaster alignment is one order of
magnitude larger than the number of SNPs in the simulated dataset. Despite
the fact that the number of ω statistic positions per region is the same in both
MSAs, the ω statistic computations on the real-world dataset comprise approx-
imately 45,000 to 60,000 SNPs in every region whereas only 2,500 to 6,000 are
present in the simulated dataset. A detailed analysis of the computational load
per region revealed that the size of the dynamic programming matrices when
the Drosophila melanogaster DNA MSA (average number of cells: 4,859,088)
is analyzed is twice the size of the respective matrices for the analysis of the
simulated binary dataset (average number of cells: 2,239,508). The load analy-
sis also revealed that the overlap between neighborhoods around consecutive ω
statistic positions is higher for the simulated dataset. As a consequence, a sig-
nificantly higher amount of operations is required per matrix for the Drosophila
melanogaster MSA thus reducing the synchronization-to-computation ratio in
the fine-grain scheme and allowing better scalability. Therefore, the more pro-
nounced performance advantages are obtained by deploying fine-grain compu-
tations in conjunction with coarse-grain computations in OmegaPlus-M as we
increase the number of threads.

The multi-grain approach aims at improving the parallel efficiency of the
coarse-grain approach. This is achieved by reducing the runtime of the slowest
threads/tasks by means of fine-grain parallelism. Figure 6 depicts the effect of the
multi-grain parallelization on the execution times of the individual threads/tasks
for the case of using 12 threads to analyze the real-worldDrosophila melanogaster
MSA. The red and blue horizontal lines show the points in time when the slowest
threads in OmegaPlus-C and OmegaPlus-M terminate, respectively.



Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection 67

Table 2. Total execution times (in seconds) of OmegaPlus-F, OmegaPlus-C, and
OmegaPlus-M to analyze a real-world dataset that comprises 37 sequences and
22,422,827 alignment sites (339,710 SNPs).

Parallelization Number of threads
approach 2 4 6 8 10 12

Fine-grain 1105.8 760.8 599.9 565.6 555.1 534,0

Coarse-grain 866.5 477.8 348.9 277.3 247.2 231.7

Multi-grain 857.1 437.3 312.1 248.0 210.8 190.6

Multi vs Fine (%) 22.4 42.5 47.9 56.1 62.1 64.4

Multi vs Coarse (%) 1.0 8.3 10.3 10.4 14.9 17.7

2 4 6 8 10 12

10
0

15
0

20
0

25
0

Thread ID

T
im

e 
(s

ec
on

ds
)

●

●

●

●

●

● ●

●

●
● ●

●

●

COARSE
MULTI

Fig. 6. Per-thread execution times (in seconds) of OmegaPlus-C and OmegaPlus-M
when the Drosophila melanogaster MSA is analyzed

6 Conclusion and Future Work

We described, implemented, evaluated, and made available an efficient multi-
grain parallelization scheme in the open-source OmegaPlus population genetics
code. Fast threads that finish their own tasks early can subsequently help slower
threads in accomplishing their tasks by deploying fine-grain parallelism. The
multi-grain parallelization scheme, in conjunction with previous algorithmic and
data structure optimizations in OmegaPlus, now allows for seamless computation
of the ω statistic on large whole-genome datasets using off-the-shelf multi-core
desktop and server systems.



68 N. Alachiotis, P. Pavlidis, and A. Stamatakis

In terms of future work, we intend to explore alternative strategies for schedul-
ing/assigning fast threads to slower threads that can potentially further increase
parallel efficiency. At present, we assign all available threads to help only one
thread, that is, the thread that will most likely terminate last at each point in
time. We expect that, a pre-analysis of MSA SNP density in combination with
a detailed empirical investigation of thread behavior as a function of the as-
signed alignment region will allow for further optimizing worker threads to mas-
ter thread(s) assignments. In addition, we plan to explore alternative hardware
platforms such as reconfigurable devices and GPUs for offloading the compute-
intensive parts of OmegaPlus.

References

1. Maynard Smith, J., Haigh, J.: The hitch-hiking effect of a favourable gene. Genet.
Res. 23(1), 23–35 (1974)

2. Kim, Y., Nielsen, R.: Linkage disequilibrium as a signature of selective sweeps.
Genetics 167(3), 1513–1524 (2004)

3. Jensen, J.D., Thornton, K.R., Bustamante, C.D., Aquadro, C.F.: On the utility of
linkage disequilibrium as a statistic for identifying targets of positive selection in
nonequilibrium populations. Genetics 176(4), 2371–2379 (2007)

4. Pavlidis, P., Jensen, J.D., Stephan, W.: Searching for footprints of positive selection
in whole-genome snp data from nonequilibrium populations. Genetics 185(3), 907–
922 (2010)

5. Berger, S.A., Stamatakis, A.: Assessment of barrier implementations for fine-grain
parallel regions on current multi-core architectures. In: Proc. IEEE Int Cluster
Computing Workshops and Posters (CLUSTER WORKSHOPS) Conf., pp. 1–8
(2010)

6. Stamatakis, A., Komornik, Z., Berger, S.A.: Evolutionary placement of short se-
quence reads on multi-core architectures. In: Proceedings of the ACS/IEEE Inter-
national Conference on Computer Systems and Applications (AICCSA 2010), pp.
1–8. IEEE Computer Society Press, Washington (2010)

7. Blagojevic, F., Nikolopoulos, D.S., Stamatakis, A., Antonopoulos, C.D.: Dynamic
multigrain parallelization on the cell broadband engine. In: Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP 2007, pp. 90–100. ACM, New York (2007)

8. Kimura, M.: The number of heterozygous nucleotide sites maintained in a nite
population due to steady ux of mutations. Genetics 61(4), 893–903 (1969)

9. Hudson, R.R.: Generating samples under a wright-fisher neutral model of genetic
variation. Bioinformatics 18(2), 337–338 (2002)

10. Gillespie, J.H.: Population genetics: a concise guide. Johns Hopkins Univ. Pr.
(2004)

11. Haddrill, P.R., Thornton, K.R., Charlesworth, B., Andolfatto, P.: Multilocus
patterns of nucleotide variability and the demographic and selection history of
drosophila melanogaster populations. Genome Res. 15(6), 790–799 (2005)


	Exploiting Multi-grain Parallelism for Efficient Selective Sweep Detection

	Introduction
	The LD Pattern of Selective Sweeps
	Fine- and Coarse-Grain Parallelizations
	Multi-grain Parallelization
	Underlying Idea
	Implementation

	Performance Evaluation
	Conclusion and Future Work
	References




