
Deploying FPGAs to Future-proof
Genome-wide Analyses based on Linkage Disequilibrium

Dimitrios Bozikas l , Nikolaos Alachiotis l ,2, Pavlos Pavlidis2, Evripides Sotiriades l , and Apostolos Dollas l

I School of Electrical and Computer Engineering, Technical University of Crete, Chania 731 00, Greece
2Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion 700 13, Greece

Abstract-The ever-increasing genomic dataset sizes, fueled
by continuous advances in DNA sequencing technologies, are
expected to bring new scientific achievements in several fields
of biology. The fact that the demand for higher sequencing
throughput has long outpaced Moore's law, however, presents a
challenge for the efficient analysis of future large-scale datasets,
suggesting the urgent need for custom solutions to keep up with
the current trend of increasing sample sizes. In this work, we focus
on a widely employed, yet prohibitively compute- and memory­
intensive, measure that is called linkage disequilibrium (LD),
defined as the non-random association between alleles. Modern
microprocessor architectures are not well equipped to deliver high
performance for LD due to the lack of a vectorized population
counter (counting set bits in registers). We present a modular and
highly parallel reconfigurable architecture that, in combination
with a generic memory layout transform, allows to rapidly
conduct large-scale pairwise calculations on arbitrarily large one­
and two-dimensional binary vectors, exhibiting increased bit­
counting capacity. We map the proposed architecture to all four
reconfigurable devices of a multi-FPGA platform, and deploy
them synergistically for the evaluation of LD on genomic datasets
with up to 1,000,000 sequences, achieving between 12.7X (4
FPGAs vs. 12 cores) and 134.9X (4 FPGAs vs. 1 core) faster
execution than state-of-the-art reference software running on
multi-core workstations. For real-world analyses that employ
LD, such as scanning the 22nd human chromosome for traces
of positive selection, the proposed system can lead to 6X faster
processing, thus enabling more thorough genome-wide scans.

I. INTRODUCTION

Recent years have witnessed significant breakthroughs
in DNA sequencing technologies, reducing sequencing costs
while improving accuracy and throughput. Consequently, vast
amounts of genomic data are currently produced, contributing
to dataset sizes that comprise thousands of whole genomes.
While the-currently active-l00,000 Genomes Project [1],
for instance, is aiming at having sequenced 100,000 human
genomes by the end of 2017, its predecessor, the 1,000
Genomes Project [2], was completed in 2015 having sequenced
2,504 human genomes. It is predicted that Genomics will be
one of four dominant Big Data domains by 2025, along with
Astronomy, Twitter, and YouTube, having sequenced between
100 million and 2 billion human genomes alone [3]. Currently,
sequencing capacity doubles every seven months [3], leading
to ever-increasing dataset sizes. This suggests the urgent need
for custom solutions to ensure the efficient processing of
future large-scale datasets without potential disruptions by
computational insufficiencies.

In this work, we focus on a widely employed statistic in
population genomics called linkage disequilibrium (LD) [4].

LD describes the non-random association between alleles I at
different loci in a population, allowing to capture correlations
between mutations that are inherited together. Computing LD
has several practical applications, either when employed alone
or as the basis for downstream analyses. Estimating the extent
and shape of LD in humans [5], for instance, has implications
in disease gene mapping, since it incorporates the effect of
past evolutionary events. When the aim is to detect traces of
positive selection, relying on LD achieves higher accuracy and
sensitivity than alternative approaches [6], allowing to more
accurately localize drug-resistant mutations in pathogens, thus
paving the way for the design of more effective drugs [7].
In genome-wide association studies (GWAS) [8], where the
focus is on identifying mutations associated with diseases, LD
serves as a powerful optimization technique to identify highly
correlated loci to prevent redundant computations.

LD calculations are conducted on so-called multiple se­
quence alignments (MSAs), i.e., two-dimensional matrices,
m x I, that comprise m DNA sequences of I nucleotides each.
Alignment columns that contain two or more states, or in other
words, at least one mutation has occurred at that location, are
called single-nucleotide polymorphisms (SNPs). Only SNPs
are informative for computing LD, with the remaining-non­
polymorphic-sites discarded prior to an analysis. The time
complexity of computing all pairwise LD scores for a number
of SNPs n and a number of sequences m is O(m x n 2), with
the number of SNPs increasing with an increasing sample size
due to more genetic variants being discovered [8].

The current trend of increasing the sample size entails
multiple challenges for LD calculations, both compute- and
memory-related ones. On one hand, memory requirements for
processing SNPs and storing LD scores increase quadratically
with an increasing number of SNPs, an inevitable conse­
quence of the sequencing of new genomes and the subsequent
discovery of new genetic variants. On the other hand, LD
requires the calculation of allele and haplotype frequencies,
computations that heavily rely on the enumeration of set
bits in registers (population count operation). As the sample
size increases, population count operations are conducted on
longer bit vectors, yielding bit enumeration the performance
bottleneck for LD, even when computed for relatively small
sample sizes, e.g., 1,000 sequences.

In addition to the computational ramifications that large
sample sizes bring to LD, the fact that Moore's law is being
continued by adding more cores in a processor and by widen­
ing the SIMD vector width brings little benefit to computing

1An allele is one of at least two alternative forms of a gene that are caused
by one or more mutations.

0 0 0 1

0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 0

ISM FSM
A C G T

A C C C A T A
AC C C T C- -... A A - - T A A- -
A A C C C T A- -
A T C C G G T

1 1+4

~
0:
1:

2:
3:
4:

0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 0 0 1

ISM FSM
A C G T

MSA

ancestral
sequence

Fig. 1. Example of a MSA that consists of an arbitrary number of sites,
including two SNPs at locations i and i + 4, along with their respective
representations under the ISM and the FSM evolutionary models.

A. Data preparation and SNP representation

LD computations are conducted on data structures that con­
sist solely of SNPs, which we henceforth refer to as SNP maps.
A SNP map is therefore a description of the existing mutations
in a population along with their respective locations in the
chromosome. The first steps for creating a SNP map entail the
sequencing of the genetic material of the individuals under
investigation, and the consequent mapping of the produced
short DNA reads to a reference genome. While the former
generates a DNA sequence per individual, the latter produces a
multiple sequence alignment (MSA) for the population under
investigation (see Fig. 1). The SNP map is generated by a
so-called "SNP calling" procedure, which identifies the SNPs
(note that invariable sites are not informative for LD).

Depending on the assumption that drives the occurrence of
mutations, i.e., ISM vs. FSM, a SNP is either represented by
a single binary vector (under ISM) or by a two-dimensional
matrix (under FSM), as illustrated in Figure 1. To identify
mutations under ISM, where a single binary vector per SNP is
used and set bits indicate mutations, each sequence in the MSA
is compared, on a per-allele basis, with an ancestral sequence
S. Given an allele ai at location i in the ancestral sequence,
the binary vector V describing SNP i is constructed as follows,
where [] is the Iverson bracket notation:

vt i = {[Vi,o = ail, [Vi,l = ail, ... , [Vi,N-1 = ad}. (1)

Based on Equation 1, a SNP is described under the FSM
assumption as follows:

M i = {V;Av;Cv;Gvt}. (2)

• We present a generic FPGA-based architecture to
accelerate LD, with particular emphasis on supporting
arbitrarily large numbers of whole genomes. With
sample sizes of future datasets in mind, we analyze the
design space of the proposed architecture and discuss
performance-critical design decisions. The proposed
accelerator architecture computes both the FSM and
the ISM models, accounting for DNA ambiguous
characters (to correct for DNA sequencing errors
and nucleotide base mis-calls [13]), while considering
missing data along the genomes.

• We develop a fully fledged, single-FPGA prototype
system, as well as a performance system that exploits
four reconfigurable devices synergistically, coupling
the LD accelerators in both cases with an efficient par­
allel algorithm for computing LD at the whole-genome
scale. This allows to deploy hardware acceleration
efficiently for genome-wide analyses that comprise a
large number of full genomes. To demonstrate this,
and in addition to a series of performance comparisons
based on simulated genomic data, we estimate possible
performance gains from the potential deployment of
our performance system in a real-world analysis for
the detection of traces of positive selection in the 22nd
chromosome of the human genome.

The remainder of this work is organized as follows. In Sec­
tion II we describe the mathematical operations and concepts
for computing LD under both the ISM and the FSM evolu­
tionary assumptions. In Section III we review related work on
software and hardware solutions for population genomics and
linkage analyses. Section IV describes the proposed accelerator
architecture, while Section V provides implementation details.
Section VI presents performance comparisons with relevant
software and hardware implementations, while Section VII
concludes this work.

LD, due to the lack of a vectorized population counter in cur­
rent microprocessor architectures. This has been shown [9] for
the simplest application of LD, which implements the so-called
infinite sites model (ISM) [10]. Under the ISM assumption, no
more than one mutation per genetic location is possible, which
allows to encode each DNA state with a single bit. In this
work, we focus on the more realistic and significantly more
compute-intensive finite sites model (FSM) [11], motivated by
the increasing interest that the particular evolutionary model
receives in recent biological studies [12]. The FSM model
allows for more than one mutation per genetic location, thus
requiring more than one bit per DNA state to avoid loss of
information. The contribution of this work is two-fold:

II. LINKAGE DISEQUILIBRIUM (LD) STATISTICS

Linkage disequilibrium (LD) quantifies the non-random
association between alleles at different genomic locations. In
the absence of evolutionary forces acting on the genomes
during reproduction, such as recombination, mutation, genetic
drift etc, all alleles that reside on the same chromosome
are inherited to the offsprings. In reality, however, several
evolutionary forces contribute to the genetic constitution of
the offsprings' generation. LD is employed to identify which
allelic combinations co-occur in a genome more frequently
than expected by chance.

Note here that, a set bit does not indicate similarity with
the corresponding location in the ancestral sequence, as was
previously the case for a binary vector under ISM. In the above
SNP description, each bit indicates one of the nucleotide bases,
i.e., adenine (A), guanine (G), cytosine (C), and thymine (T).

The astute reader will have noticed by now that the above
representation is seemingly not optimal since 2 bits would
have been sufficient to accurately represent the 4 DNA bases.
In reality, however, DNA sequencing errors and base mis­
calls [13] do not allow to accurately determine which of
the 4 nucleotides exists at each location in the genome.

(3)

(4)

(5)

(6)

Therefore, a total of 16 ambiguous DNA characters (see
http://www.bioinformatics.org/sms/iupac.html) are employed
in order to allow subsequent statistical analyses to account
for such ambiguity.

B. Allele and haplotype frequencies

From a computational standpoint, a pairwise LD calcu­
lation between two SNPs consists of two distinct parts, the
calculation of allele and haplotype2 frequencies followed by
the calculation of a score according to an LD measure.
For the sake of clarity, we initially describe LD when the
ISM assumption holds, and introduce thereafter the additional
operations required by the FSM model.

For a SNP at location i, the allele frequency F under ISM
is computed as follows:

F _ L~--=-Ol[Vi,k = 1]
"- N '

where N is the number of sequences in the dataset. This
operation entails the enumeration of set bits at locus i, or in
other words, the enumeration of mutated alleles. The haplotype
frequency H, which is computed on a per-SNP-pair basis, is
given for a pair of SNPs i and j by the following equation:

L~~Ol[Vi.k = l][Vj.k = 1]
Hij = N .

Here, the numerator computes the total number of genomes
that exhibit the mutated allele at both locations i and j.

C. Measures of Linkage Disequilibrium

LD relies on the probability of independent events. Once
the allele and haplotype frequencies for SNPs i and j are
known, we can then compute LD as follows:

This calculates the difference between the probability of ob­
serving two mutations at two chromosomal locations in the
same genome and the product of the probabilities of observing
the two mutations independently. When D ij = 0, SNPs i
and j are in linkage equilibrium, indicating that mutations
at chromosomal locations i and j occur independently of
each other. When D ij i=- 0, SNPs i and j are in linkage
disequilibrium, and the mutations at chromosomal locations
i and j are not independent.

The above formulation of LD is rarely used due to the
fact that the sign and range of values that D assumes vary
with the frequency at which mutations occur, yielding the
comparison of LD values highly problematic, even between
genomic regions in the same genome. For this reason, several
standardization approaches have been proposed, with a widely
used one relying on the Pearson's correlation coefficient, as
described below:

2 (Hij - FiFj)2
Tij = Fi(l - Fi)Fj(l- Fj)'

Employing r 2 as a measure of LD has multiple advantages
since it assumes values between 0 and 1, which allows
to trivially compare different genomic regions. Furthermore,
interpreting the scores becomes rather intuitive since values

2A haplotype is a set of mutations that are inherited together.

closer to 1 indicate high LD, whereas values closer to 0
indicate reduced association.

The discussion so far has been focused on the ISM model,
which represents an approximation of the FSM assumption
regarding the occurrence of mutations. This approximation
allows for a simpler SNP representation (binary vector vs.
two-dimensional matrix), which, evidently, leads to lower
computational requirements and shorter analysis times. To
compute LD between two SNPs, i and j, under FSM, assume
two sets of DNA characters Bi and Bj that contain the alleles
found in SNPs i and j, respectively, along with their sizes
Vi and Vj. For the two SNPs in Figure 1, for instance, we
have Bi = {A, 0, T} and Bj = {A, 0, G, T}, and set sizes
Vi = 3 and Vj = 4, respectively, since no occurrence of G is
found in SNP i. LD is then computed based on the previous
mathematical description for ISM as follows:

LD. = N(Vi - l)(Vj - 1) '" '" 2 (7)
"J Vi v. ~ ~ Tml,

J mESi IESj

where, now, Equation 6 is calculated separately for each pair
of columns in the corresponding M i and M j matrices. When
an allele is completely absent from a SNP, as is the case
for guanine in SNP i, the corresponding matrix column is
omitted in the calculations. Therefore, in comparison with
ISM, computing LD under FSM can require up to 16 times
more computations in the worst case, which occurs when all
alleles are present in all SNPs.

III. RELATED WORK

Driven by the disproportion between the rate at which
molecular data are currently being accumulated and Moore's
law, novel software and hardware designs have been recently
introduced, addressing both performance and scalability issues.
PopGenome, an R package released by Pfeifer et al. [14],
offers a variety of population genetics statistics (including
LD). Although parallel programming is employed to reduce
processing times for the analysis of whole-genome data, high­
end processor features, such as vector intrinsics or advanced
caching techniques, are not appropriately exploited.

A significant update to the widely used PLINK soft­
ware [15] (over 11,500 citations according to Google Scholar)
for GWAS was recently released by Chang et al. [16]. The
second-generation PLINK release (version 1.9) achieves major
performance improvements over the initial software by heavily
employing multiple cores and bit-level parallelism. LD is com­
puted using an efficient calculation of the squared Pearson's
correlation coefficient that relies on SSE2 vector intrinsics.

OmegaPlus, released by Alachiotis et al. [17], represents a
scalable software implementation that relies on LD to target
traces of positive selection on whole genomes. Similarly to
PLINK 1.9, the squared Pearson's correlation coefficient is
employed as the preferred measure of LD, while a series of
four parallelization alternatives are provided to address load
imbalance issues that derive from the way LD calculations are
conducted when positive selection is detected.

Over the past decade, Bioinformatics gradually became
fertile ground for custom hardware accelerators ([18], [19]).
However, to the best of the author's knowledge, the sole
study that addresses the computational issues of LD at the
hardware level is the recent exploratory work by Alachiotis

B. Accelerator architecture

Fig. 2. The two-step transformation approach of the standard OmegaPlus
memory layout (A) to an inter-state one (B), which facilitates processing of
multiple states, and to an inter-SNP one (C), which allows shorter data retrieval
times.

(C)

MCPj•1

SNPoj/M

SNP1 JIM

SNP;j/M

SNPS_1 JIM

MCPj+1

ci.­
U
~

1

inter-SNP layout

~

T

1

(B)

SNP;_l

~
O~5 O~5 O~5 T

0-15
A C G T

16·31 16·3 16·31 16·3

A C G T

A~C~G~T...
SNP;+lzero

padding

T
cL
Z
lfl

o
(A)

SNP;_l

A

C

G

T

valid

SNP;+l

I+- w bits --+1 inter-state layout
~

cL
Z
lfl

1

The second and final transformation, depicted in Figure 2C,
interleaves data from all s SNPs within a genomic region of
interest based on the number of input ports that the accelerator
can deploy for SNP data retrieval. Remember that the acceler­
ator architecture is designed to accommodate arbitrarily large
sample sizes, where retrieving SNP data quickly becomes the
performance bottleneck. Therefore, adopting a memory layout
that allows to retrieve per-SNP data in parallel through multiple
input ports is a prerequisite for the acceleration of large­
scale LD calculations. In our design, SNP data are transferred
from main memory to the accelerator via M pairs of memory
controllers (MCPs), with each pair retrieving SNPs in pairs
to facilitate the required pairwise calculations. Each MCP is
being assigned a fraction of the total sample size, retrieving
only the corresponding SNP part for all the SNPs in a region.

the five memory blocks requires longer overall retrieval times,
as this essentially leads to accessing memory in strides that
are far larger than the size of the memory pages (4KB).

The first memory layout transformation leads to the inter­
state SNP representation illustrated in Figure 2B. Previously,
all w bits in a word were indicating presence or absence of
the same nucleotide base for w sequences. The transformed
layout now comprises information for all DNA bases (A, C,
G, T, and ambiguous characters) from w / 4 sequences. Note the
bit/sequence indices in Figure 2B, assuming a word width of
64 bits (w = 64). Additionally, note the absence of validation
bits, which can be computed on the fly with a 4-bit logical or
operation.

The proposed accelerator architecture, illustrated in Fig­
ure 3, operates on a pairwise basis, calculating the LD score
for a single pair of SNPs at each time. Processing starts with
the counting of the mutated alleles (under ISM) or the DNA
states (under FSM), achieved by the first two pipeline stages
(see bottom of Fig. 3), denoted BC (Bit Count) Stages I and
2. Thereafter, the required allele and haplotype frequencies are

(8)

IV. SYSTEM DESIGN

3More compact DNA encoding is not feasible due to the fact that 16 valid
DNA states are considered in real-world data, i.e., A, C, G, T, and ambiguous
characters. Therefore, 4 bits per state are required.

and Weisz [20]. In this study, the authors map a simplified
LD kernel for ISM to a Virtex 7 FPGA, adopting various
assumptions that are broadly valid only when simulated data
are analyzed, such as complete genomic data (no missing data),
as well as absence of ambiguous characters and alignment
gaps. In addition, the employed processing scheme relies on
preloading sets of SNPs to on-chip memory blocks, imposing
that wayan upper bound on the number of sequences that can
be processed correctly, while yielding performance efficiency
highly dependent on the amount of available on-chip memory.

In the current study, we enhance the existing LD accel­
eration landscape by introducing a complementary architec­
ture that provides all the functionality that can potentially
be required by a real-world analysis. More importantly, and
from a biological standpoint, we eliminate the upper bound
on the number of genomes that can be processed correctly.
This yields a future-proof solution since the number of whole
genomes in future biological studies is only expected to
increase. Furthermore, it paves the way to effectively analyze
thousands to millions of individuals, thus increasing accuracy
of population genomics analyses [21] and the chances for
discovering rare human diseases [22]. From a computational
standpoint, the current work facilitates the exploration and
understanding of the involved trade-offs between binary vector
sizes and acceleration performance attained by current FPGA
technology when an increased amount of pairwise calculations
between elements represented by binary vectors is required.

with zero padding. The first four memory blocks correspond to
the four nucleotide bases3 , whereas the last one indicates valid­
ity of the corresponding bits, accounting this way for missing
data along the genomes. This layout is highly inefficient for
acceleration purposes due to the fact that operations cannot
proceed until data for all nucleotide bases and the validation
bits are retrieved. Loading SNP data by iteratively accessing

Computing LD is intrinsically a memory-bound operation,
and maximizing the amount of operations per memory ac­
cess is of critical importance to the overall performance of
the accelerator architecture. In the following subsections, we
initially describe a series of memory layout transformations
(Section IV-A) that allow to retrieve SNP data from memory
efficiently, as well as to effectively utilize hardware resources
by maximizing parallelism in performance-critical stages, e.g.,
pairwise combinations and bit counting. Thereafter, we present
our parameterized architecture (Section IV-B) and explain the
design space (Section IV-C).

A. Memory layout transformations

We initially consider the OmegaPlus memory layout, which
stores SNPs contiguously in memory, as shown in Figure 2A.
Given a sample size of N sequences and a word width of w
bits, each SNP is represented by a total of five memory blocks
of size Beach:

Fig. 3. Top-level design of the accelerator architecture. Processing proceeds
from the bottom to the top, through four discrete pipeline stages, i.e., BC
Stages I and 2 for the partial accumulation of population count results, AHF
for a final accumulation and calculation of allele and haplotype frequencies,
and a final COR stage for the floating-point correlation calculations.

computed in stage AHF (AllelelHaplotype Frequencies), and
the required correlation values per pair of SNPs (under ISM)
or per pair of DNA states of different SNPs (under FSM) are
calculated in the final COR stage.

a) BC Stage 1: The first stage relies on multiple popu­
lation counters operating in parallel to calculate the number of
set bits in the incoming binary vectors/matrices. SNP data are
provided via a number of 2M input ports, organized in M pairs
to facilitate pairwise calculations. As already mentioned, each
pair of ports (referred to as MCP in Section IV-A) retrieves a
fraction of the entire SNP. Each MSC (Mutation/State Counter,
Figure 4) initially calculates the validation bits that correspond
to the pair of partially loaded SNPs and validates the SNP
data. Thereafter, a total of 25 16-bit-wide population counters
operate in parallel to count the set bits in each of the incoming
SNP vectors and their combinations, i.e., 4 vectors for the 4
DNA states of SNP A, 4 vectors for the 4 DNA states of SNP
B, one internally computed validation vector, and 16 vectors
for all possible combinations of the per-state vectors for the
pair of SNPs A and B. The number of valid sequences per SNP
pair varies according to the amount of missing data along the
genomes. Thus, counting the validation bits on a per-SNP­
pair basis is a prerequisite for the correct calculation of LD
scores along genomes with missing data. Each of the 16-bit

c) AHF Stage: The partial per-state sums along with the
validation bits are accumulated in the current stage with a total
of 25 W-bit-wide accumulators. This additional accumulation
stage allows to correctly calculate the number of mutations or
DNA states in large-scale datasets that comprise thousands to
millions of genomes, given that sufficiently wide accumulators
are deployed. Once the final allele and haplotype counts
are calculated by the A-Accum and H-Accum accumulators,
having considered only the valid sequences for the given pair
of SNPs, all accumulator outputs are converted to single­
precision floating-point values, without loss of accuracy, to
facilitate further processing. Note the subtractors after the A­
Accum allele accumulators, which calculate the number of
non-mutated alleles based on the number of mutated ones
and the total number of valid sequences for the SNP pair.
The number of valid pairs of bits in a SNP pair may vary,
depending on the amount of missing data and alignment gaps
in both SNPs. To yield comparable LD scores along different

population counters consists of a 4 x 256 dual-port ROM and
a 5-bit adder, with each port providing the number of set bits
for half of the input.

b) BC Stage 2: The previous stage computes 25 popula­
tion count results per MCP, which are accumulated in the cur­
rent stage with the use of 25 M-to-l adder trees with increasing
adder width per tree level. The 25 partial sums that are passed
to the next pipeline stage reflect all mutations or states that
have been previously counted by the M MSCs in BC Stage
1. This allows to proceed with the remaining computational
steps in the following pipeline stages independently of the
available number of input ports, thus facilitating a potential
future migration to a different device/platform.

In addition to alleviating the migration overhead, orga­
nizing the enumeration step of alleles and haplotypes into a
platform-specific (BC Stage 1) and a dataset-specific stage (BC
Stage 2) allows to easily support other dataset types as well,
such as RNA secondary structure (6, 7 states) or amino acids
(20 states). This requires additional logic and population count
instances in BC Stage 1, as well as additional M-to-l adder
trees in BC Stage 2, while the rest of the design remains largely
intact.

SNP B

SNPA

Fig. 4. Block diagram of the MSC unit. As the SNP length (number of
genomes) increases, overall acceleration performance relies on the number
of MSC units operating in parallel to boost population count capacity of the
FPGA. Prior to the array of 16-bit population count blocks, dedicated logic
calculates on the fly all the required pairwise combinations of the input SNPs.

LD score

SNP Aj SNP BjSNP Ao SNP Bo

V. IMPLEMENTATION AND VERIFICATION

TABLE I. OCCUPIED RESOURCES ON A VIRTEX 6 LX760 FPGA BY A
SINGLE ACCELERATOR INSTANCE, AS WELL AS BY THE COMPLETE AND

FULLY FUNCTIONAL SYSTEM THAT INCLUDES VENDOR-SPECIFIC I/O
INFRASTRUCTURE, E.G., MEMORY CONTROLLERS.

units. If the number of samples is small enough to permit
the previous AHF stage to provide input to the COR stage
periodically with a period of 4 cycles or less, then the COR
stage becomes the bottleneck. This is the case if less than
448 sequences (binary vector length) are processed, which,
however, is not the average use-case for which the current
architecture is designed. Note that, the proposed architecture
accommodates such sample sizes correctly, albeit suboptimally,
by deploying zero padding to ensure that a minimum of 448
bits per binary vector are allocated and processed at all times.

The proposed architecture is described using VHDL,
while the floating-point operators are generated by the
Xilinx Core Generator (https://www.xilinx.comJproducts/
design-tools/coregen.html). In addition to exhaustive simu­
lation tests, correctness was verified in hardware, initially
employing one of the available Virtex 6 LX760 FPGAs on a
Convey HC-2ex platform. Due to the memory-bound nature
of LD computations, the specific platform was selected in
order to exploit its high-end memory subsystem that is capable
of providing up to 80GB/s of memory bandwidth when all
four available FPGAs are deployed. For performance purposes,
the accelerator architecture is mapped to two and all four
FPGAs of the platform, with each FPGA assigned a different
memory space of SNP data to process (see Section VI for
more details). Correctness was additionally verified for the
high-performance configurations of the platform, i.e., when
two and four FPGA devices are deployed. Based on a total of
15 memory controllers that the accelerator architecture deploys
for VO purposes when mapped to the specific platform, the
number M of MSC instances in the evaluated design point
is set to 7. Table I provides post-place-and-route performance
and resource utilization results on a single device.

As can be observed in the table, only a fraction of the
available device resources are occupied on each device, which
is mainly due to our design goal of supporting arbitrarily large
sample sizes. This does not allow performance improvements
to follow an increase of hardware resources, e.g., via the
instantiation of additional population counters or accumulators
operating in parallel, since the required time for the enumer­
ation of alleles/haplotypes can not be further reduced before
the memory bandwidth is improved. Setting a different design
target, such as optimizing for a smaller sample size and a
larger number of SNPs [20], allows to improve performance by
occupying additional resources, since entire SNPs are loaded to
on-chip memory prior to processing. Aiming, in this work, at
supporting large sample sizes (arbitrarily long binary vectors),
dictates that entire SNPs can not be temporarily stored on

Full system
Amount Occup.

43,969 37%
150,932 15%
124,909 26%

437 30%
96 11%

11,778 9%
42,453 4%
36,717 7%

175 12%
96 11%

Acce!. instance
Amount Occup.Resources

Occup. slices
Slice registers

Slice LUTs
BRAMs (I8Kb)

DSPs

C. Design space analysis

LD is a memory-bound computation, relying on the rapid
retrieval of data from memory and their efficient processing
without delay. Given M pairs of input ports, an equal number
of MSCs is required in BC Stage I in order to process data
at the speed of arrival. As the number of sequences increases,
allele/haplotype frequency computations become the limiting
performance factor. Therefore, suboptimal processing/delays
during the allele/state enumeration stages can have a profound
effect on the success of the acceleration system.

In a similar manner, the number of pairs of parallel input
ports dictates the size of the M-to-I adder trees in BC Stage
2. The number of adder trees, however, as well as the number
of accumulators in the AHF stage is driven by the data type.
Assume, for instance, a data type of S = 4 states, as is the case
for DNA. An equal number of S adder trees and, consequently,
accumulators, are required for each of the two input SNPs,
along with S x S pairs of adder trees and accumulators for all
possible combinations of states for the two SNPs. Note that,
the additional adder tree/accumulator pair, for the validation
bits, is specific to the proposed architecture, trading hardware
resources for a smaller memory footprint and shorter data
retrieval times. The accumulator width needs to be sufficiently
large to accommodate the largest possible number of mutated
alleles/states for a sample size N, which can be as high as
N - 1. Remember that non-polymorphic SNPs are discarded
prior to an analysis. Therefore, alignment sites with 0 or N
set bits do not exist in the data to be processed.

In the final COR stage, the number of COR units should not
exceed S x S, which is the number of pairwise combinations
for the S states per SNP. Instantiating a smaller number does
not affect performance due to the expectedly large sample size,
which shifts the computational bottleneck to the enumeration
of alleles and haplotypes, i.e., the first three stages of the accel­
erator pipeline. Our accelerator pipeline exhibits 4 correlation

genomic regions within the same chromosome, the valid SNP
size per SNP pair is calculated on a pairwise basis as well, by
the VS-Accum (Valid Size) accumulator.

d) COR Stage: The final stage of the accelerator
pipeline computes a measure of LD, such as the squared
Pearson's correlation coefficient. This is achieved via the
instantiation of N floating-point pipelines (COR units) that
operate in parallel, with each one of them implementing
Equation 6 while calculating on a different pair of input
data combinations, i.e., different DNA states under FSM or
different SNPs under ISM. Note that, Equation 6 describes the
Pearson's correlation coefficient as applied for the ISM model,
while additional operations are required for FSM (N-to-I adder
tree, multiplier, see Equation 7). This allows to efficiently
support both the ISM and the FSM models by facilitating
the respective computational requirements using the same
processing pipeline. If N is smaller than the required number
of r 2 calculations, dedicated synchronization/scheduling logic
ensures access to the available COR units in a round-robin
fashion. The FSM Control calculates the numbers of valid
states per SNP in the pair under examination, as required by
Equation 7. Serializer logic is deployed prior to the output
when ISM scores are calculated, due to the single output port
that the accelerator architecture provides.

TABLE II. PERFORMANCE COMPARISON FOR ANALYZING 10,000 SNPS AND SAMPLE SIZES OF 100,000 AND 1,000,000 SEQUENCES BASED ON FSM.

OmegaPlus 3.0.0 (Reference) OmegaPlus modif. (Optimized) HW speedup vs. Reference HW speedup vs. Optimized
Exec. time kLD/sec Exec. time kLD/sec 1 FPGA 4 FPGAs 1 FPGA 4 FPGAs

Thr. 105 106 105 106 105 106 105 106 105 106 105 106 105 106 105 106

1 11,307 113,647 4.42 0.43 3,960 39,818 12.62 1.25 37.8 38.3 101.3 134.9 13.3 13.4 35.5 47.3
2 5,824 56,736 8.58 0.88 2,048 19,771 24.40 2.52 19.5 19.1 52.2 67.4 6.9 6.7 18.4 23.5
4 2,921 29,176 17.11 1.71 1,080 9,991 46.28 4.99 9.8 9.8 26.2 34.6 3.6 3.4 9.7 11.9
8 1,528 14,883 32.71 3.37 707 5,357 70.65 9.34 5.1 5.0 13.7 17.6 2.4 1.8 6.3 6.4
12 1,689 11,920 29.59 4.19 594 4,303 84.10 11.61 5.7 4.0 15.1 14.2 2.0 1.5 5.3 5.1

TABLE Ill. PERFORMANCE COMPARISON FOR ANALYZING 10,000
SNPs AND 100,000 SEQUENCES BASED ON ISM.

ensure a fair comparison with the ISM implementations, we
include the evaluation results (execution times and throughput
performance) reported by the authors (Table 3 in [20]). Note
that, software execution times in Table III are measured on
a Intel Xeon E5-2630 6-core processor running at 2.60 GHz,
with 32 GB of main memory, while the LD accelerator [20]
is mapped to a Virtex 7 VX980T FPGA. In addition to the
fact that a larger FPGA device is employed by the authors, the
evaluated design point is the outcome of extensive design space
exploration with a distinctively different goal and assumptions,
which is to maximize throughput performance for moderate
sample sizes while assuming complete binary data.

on-chip memory prior to processing, since this would incur
an upper bound on the number of sequences. Based on the
amount of available on-chip memory on the employed Virtex
6 devices, we calculate that this upper bound would be as low
as 128,256 sequences for just 32 SNPs, likely to be exceeded
in real-world analyses in the very near future [3].

Support for whole genomes, i.e., typically thousands to
millions of SNPs, is provided at the software level, relying on
the so-called generic algorithm [20] for LD calculations. The
underlying idea is to organize SNPs in fixed-size chunks, e.g.,
32 or 64 SNPs, and combine such chunks in a pairwise manner
(compute groups) guided by biological restrictions. Unlike
a previous work that introduced and employed the generic
algorithm to load several SNP chunks entirely to FPGA on­
chip memory [20], we deploy the generic algorithm to direct
LD acceleration to different genomic regions along a genome,
operating each time on single genomic regions of significantly
larger chunk size, e.g., 10,000 SNPs.

VI. PERFORMANCE EVALUATION

Thr.
1
2
4
8
12

PLINK 1.9
Exec. Time kLD/sec

389.1 128
297.6 168
180.2 277
109.4 456
88.3 566

LD Accel. [201
1 FPGA

159.3
121.4
73.6
44.7
36.0

HW speedup
1 FPGA 4 FPGAs

20.9 56.0
15.9 42.7
9.7 25.9
5.9 15.7
4.7 12.7

To evaluate performance of the proposed accelerator ar­
chitecture when mapped to one, two, and four FPGAs, we
deploy a workstation with two Intel Xeon E5-2620 6-core
processors running at 2.00 GHz and 24 GB of main memory,
as a test platform for the software benchmarks. We provide
comparisons with two state-of-the-art software implementa­
tions, PLINK 1.9 [16] and OmegaPlus 3.0.0 [17], and report
execution times in seconds and throughput performance in
terms of number of scores per second (LDs/sec). PLINK 1.9
serves as the reference software for the ISM benchmarks since
it outperforms the respective OmegaPlus implementation when
more than four cores are employed [20]. Note however that,
PLINK 1.9 computes LD based on genotypes and not alleles,
thus exhibiting increased complexity in comparison with the
allele-based OmegaPlus implementation for LD under FSM.
For this reason, the OmegaPlus implementation is employed
as reference for the FSM benchmarks. In the interest of a fair
performance evaluation, we modified the source code to deploy
the intrinsic population counter implemented in hardware, as
previously suggested [20], achieving between 2.16 and 2.85
times faster execution (see Table II).

Table II provides evaluation results for the FSM model,
based on simulated datasets that comprise 100,000 and
1,000,000 DNA sequences. Both the hardware accelerator
and the performance-enhanced software implementation that
deploys the _mm-popcnCu64 intrinsic instruction (denoted
"Optimized" in the table) generate qualitatively identical re­
sults with the standard OmegaPlus 3.0.0 release. Table III
provides ISM comparisons with PLINK 1.9, as well as with
the FPGA-based LD accelerator described by Alachiotis and
Weisz [20], for a sample size of 100,000 sequences. To

In our work, the scope is to support arbitrarily large
sample sizes under both the ISM and the FSM models while
considering missing data and alignment gaps to allow potential
deployment in future real-world large-scale analyses. To this
end, we report performance gains from the deployment of
the multi-FPGA accelerator system in a real-world analysis
for the detection of positive selection on the 22nd human
chromosome. The dataset, available by the 1,000 Genomes
project [2], comprises 2,504 sequences and 1,055,736 SNPs.
OmegaPlus required 36.9 minutes (20.3 minutes for data
preparation, performed by a single CPU core, and 16.6 minutes
for LD computations, using 12 CPU cores) to complete the
analysis on the test platform, achieving a throughput perfor­
mance of 1.78 mLD/sec for the processing stage (12 CPU
cores). Excluding the preparatory sequential execution, during
which data parsing, filtering, and encoding are performed (20.3
minutes, required by both the software and the hardware im­
plementations), the multi-FPGA acceleration system achieves
6 times faster processing than 12 CPU cores, delivering a
throughput performance of 10.64 mLD/sec with four FPGAs.

Figure 5 provides speedups obtained by 1, 2, and 4
FPGAs, for an increasing number of samples up to 1,000,000.
Performance fluctuations are observed for small sample sizes,
due to the fact that processing times are comparable to the
setup/synchronization overhead. As the sample size increases,
the computation-to-synchronization ratio improves, leading to
steady performance gains over both the standard and the op­
timized (with _mm-popcnCu64) software implementations.
The process of assigning compute chunks to multiple FPGAs
relies on the computational load distribution mechanism of the
generic algorithm [20], which is agnostic to the underlying

Speedup performance for increasing sample size computational stages in long-running biological analyses.

[1] Genomics England, "The 100,000 genomes project,"
2015. [Online]. Available: https://www.genomicsengland.co.uk/
the-IOOOOO-genomes-project/

[2] P. H. Sudmant et aI., "An integrated map of structural variation in 2,504
human genomes," Nature, vol. 526, no. 7571, pp. 75-81, 2015.

[3] Z. D. Stephens et aI., "Big data: astronomical or genomical?" PLoS
BioI, vol. 13, no. 7, p. e1002195, 2015.

[4] R. Lewontin and K. Kojima, "The evolutionary dynamics of complex
polymorphisms," Evolution, pp. 458-472, 1960.

[5] D. E. Reich et aI., "Linkage disequilibrium in the human genome,"
Nature, vol. 41 I, no. 6834, pp. 199-204, 200 I.

[6] J. L. Crisci et aI., "The impact of equilibrium assumptions on tests of
selection," Frontiers in genetics, vol. 4, 2013.

[7] M. T. Alam et aI., "Selective sweeps and genetic lineages of Plas­
modium falciparum drug -resistant alleles in Ghana." The Journal of
infectious diseases, vol. 203, no. 2, pp. 220-7, Jan. 201 L

[8] P. M. Visscher et aI., "Five years of GWAS discovery," The American
Journal of Human Genetics, vol. 90, no. I, pp. 7-24, 2012.

[9] N. Alachiotis et aI., "Efficient computation of linkage disequilibria
as dense linear algebra operations," High Petformance Computational
Biology (HICOMB), 2016.

[10] M. Kimura, "The number of heterozygous nucleotide sites maintained
in a finite population due to steady flux of mutations," Genetics, vol. 61,
no. 4, p. 893, 1969.

[11] J. Felsenstein, "Evolutionary trees from dna sequences: a maximum
likelihood approach," Journal of molecular evolution, vol. 17, no. 6,
pp. 368-376, 198 I.

[12] L. A. Mathew et aI., "Why to account for finite sites in population
genetic studies and how to do this with jaatha 2.0," Ecology and
evolution, vol. 3, no. 11, pp. 3647-3662,2013.

[13] D. R. Kelley et aI., "Quake: quality-aware detection and correction of
sequencing errors," Genome biology, vol. II, no. 11, p. I, 2010.

[14] B. Pfeifer et aI., "PopGenome: An Efficient Swiss Army Knife for
Population Genomic Analyses in R." Molecular biology and evolution,
vol. 31, no. 7, pp. 1929-36, Jul. 2014.

[15] S. Purcell et aI., "PLINK: a tool set for whole-genome association and
population-based linkage analyses," The American Journal of Human
Genetics, vol. 81, no. 3, pp. 559-575, 2007.

[16] C. C. Chang et aI., "Second-generation PLINK: rising to the challenge
of larger and richer datasets," Gigascience, vol. 4, no. 1, p. 1, 2015.

[17] N. Alachiotis et aI., "OmegaPlus: a scalable tool for rapid detection of
selective sweeps in whole-genome datasets," Bioinjormatics, vol. 28,
no. 17, pp. 2274-2275, 2012.

[18] I. T. Li et aI., "160-fold acceleration of the Smith-Waterman algorithm
using a field programmable gate array (FPGA)," BMC bioinformatics,
vol. 8, no. 1, p. 1, 2007.

[19] S. Zierke and J. D. Bakos, "FPGA acceleration of the phylogenetic
likelihood function for Bayesian MCMC inference methods," BMC
bioinjormatics, vol. II, no. I, p. 184, 20 IO.

[20] N. Alachiotis and G. Weisz, "High Performance Linkage Disequilib­
rium: FPGAs Hold the Key," in Proceedings of the 20i6 ACMISiGDA
international Symposium on Field-Programmable Gate Arrays, ser.
FPGA'16. ACM, 2016, pp. 118-127.

[21] P. Pavlidis et aI., "SweeD: likelihood-based detection of selective
sweeps in thousands of genomes," Molecular biology and evolution,
p. mstll2, 2013.

[22] E. P. Hong and J. W. Park, "Sample size and statistical power calculation
in genetic association studies," Genomics & informatics, vol. 10, no. 2,
pp. 117-122,2012.

ACKNOWLEDGEMENT

This work was supported in part by EU H2020 ICT project
dRedBox, contract #687632, and by EU H2020 FETHPC
project EXTRA, contract #671653.

REFERENCES

500000

. 0.. 1 FPGA vs. OP

.~.. 2 FPGAs vs. OP
.-f)... 4 FPGAs vs. OP

. {J' 1 FPGA VS. OP Opt.
-~ 2 FPGAs VS. OP Opt.
-iIE- 4 FPGAs VS. OP Opt.

100000

.~ ... 'I'" "iI-

.A
"

o'·'·"'lr __ ._.
h

. ·_·_A .-.---8 ._-_.-6.
~....

10000 25000

Number of DNA sequences (sample size)

,
;
;

Ii.

la'
;
;
;
;
;
;
;
;
;
;

'V-·;/~·-·-·V_'-'-'s;;;.·_._ ..,.

1000 2500

25

20

15
g
a.
::>

"'"'"a.
(fJ

10

Fig. 5. Speedup performance for 1,000 to 1,000,000 sequences (OP:
OmegaPlus 3.0.0, OP Opt: optimized with intrinsic population counter).

o--'-r--,-----,---,----,----,--,---,--,-,

hardware, practically allowing to deploy an arbitrary number
of devices by treating each device similarly to a processor core.
This explains the poor speedup performance that is observed
when 4 FPGAs are deployed for the analysis of small sample
sizes. For 1,000 sequences, for instance, a second FPGA
improves performance (4.7X with two FPGAs vs. 2.5X with
one), while additional devices obliterate the attained speedup
gain due to an increased synchronization overhead (3.1X with
four FPGAs vs. 4.7X with two). When 1,000,000 sequences
are analyzed, on the other hand, a favorable computation-to­
synchronization ratio is maintained despite the additional de­
vices used due to excessive compute requirements. Therefore,
performance steadily improves with an increasing number of
devices, allowing four FPGAs to deliver up to 3.5X faster
processing than a single device.

VII. CONCLUSIONS

Motivated by the current trend of increasing sample sizes
in genomic studies, we designed an accelerator architecture for
LD to eliminate the upper limit of previous hardware solutions
on the number of sequences. The accelerator architecture
exhibits increased population count capacity while meeting
real-world biological requirements, that, in combination with
an appropriately modified parallel algorithm for deploying
multiple FPGAs, yield the proposed solution highly suitable
for large-scale analyses of real data.

Evaluations of computational methods that employ multiple
statistics to analyze SNPs have revealed that dataset-specific
features, such as the SNP location or the variance of SNP
densities in subgenomic regions, can shift the performance bot­
tleneck among the employed kernels/statistics. As future work,
we therefore intend to devise a self-adaptable acceleration
system that relies on partial reconfiguration at runtime in order
to maximize performance on an as-needed basis during distinct

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

