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A Forward Spatial Simulator on Evolutionary Game
Theory

Abstract

Individuals best adapted to their biotic and abiotic environments are more
likely to survive and reproduce. Until today, studies that link behavior with the
genome evolution are sparse. A framework to link behavior of individuals to the
evolution of populations is the evolutionary game theory (EGT). The main idea
behind this theory is that individuals with different phenotypes represent different
strategies regarding interactions between individuals participating in an evolu-
tionary game. These interactions affect access to food supplies and mates. This
received payoff is translated to fitness in population genetics, and determines the
reproduction rate of an individual. EGT games are commonly presented as matrix
games, which have guided the research on social dilemmas. Usually two strategies
are studied: cooperation (synergy) and competition. Cooperation enables higher
payoff than individuals could achieve on their own. However, the tendency to an-
tagonize the other players and benefit from their behavior is often appealing to
secure resources, especially in the cases when resources are limited.

Simulators are important for studying EGT and its effect on the structure of
populations and genome evolution as they make associations between parameters
and outcomes possible. To date, most of the algorithms for population genetics
studies make a multitude of simplifying assumptions. For example, the widely-used
software ms allows for population substructure, homologous recombination, but it
does not assume any spatial heterogeneity. Thus, the population is assumed to live
in an ideal space where all members of a deme are allowed to mate with the same
probability with any member of the same deme and without otherwise interacting
with each other. Furthermore, the behavior of an individual has not been linked
to its fitness value. To tackle this issue, we implemented FEG a forward-in-time
spatial simulator featuring a predator interaction model under the concept of EGT.

FEG is available as an open source software (GPL V3.0), which can be obtained
from https://github.com/aggelosk/game.






Xwpwnodg Ilpocopoiwtng oe EZeAixtiny Oswpsia
Moy viwy

ITepiandn

To droua mou mpocopudlovton xahiTepa 0T0 BloTind xou afBLloTiNd Toug TEPYSdA-
Mov eivan o miavd vo emBidcouy xan vor avamopoyYolv. Méypl ofjuepa, HEAETES TTOU
OUVOEOLY TN CUUTERLPORA Ue TNV eEEMEN Tou yowdiouotog onaviCouv. H eehwnti-
x1y Yewplo mowyviwv (EGT') npoogépel éva mAaioto yio T 0OVOEST TS CUUTERLPORES
TV atopwy Pe T €€EAEN twv TAntuoudy. H xdpia 8éa tiow and auth tn Yew-
pla efvan 6TL oL dTOPA PE BLAPORETINOVE PUVOTUTIOUS AVTLTPOCWTEVOUY BLUPOPETIXES
CTEATNYXES OGOV aPOEd TIC AAANAETORACELS UETOEY ATOUMY TOU GUUUETEYOLY OE EVal
e€ehxTind mouyvidl. Autéc ol alknhemidpdoeic ennpedlouy TNV Tedclucn ot Ted@L-
o xou oUVTEOWoLs. Auty| 1 anolafn) yetapedleton o daEBViXY) EUOCTIXOTNTO GTNY
TAnduouion yeveTiny xou xodopilel Tov puiud avamapaywyhc evog atdpou. Xuvitng,
ot EZehixtind Houyvidia (EG) peletdvron 800 oTpatnyixés: 1 cuvepyaoio xaL o o-
viaywviopog. H ouvepyaoio emtpénet udmidtepn amorof3n and 6, TL ta dtoyo Unopolv
VoL ETITUYOLY YOVaL Toug. §26TO00, 1) TAoT VoL avTory Vi ovTon TOUG GAAOUG TOUXTES ol
VoL ETWPEAOUVTAL OO T1) GUUTERLPOEJ TOUG EVOIL GUY VA EAXUGTIXY YLol TNV EEATQAALO
TOPWY, EWBWE OTIC TEPITTWOELC OTOU OL TOEOL EIVOL TEPLOPLOUEVOL.

Ou npocopowwtég eivan onuavtxol yia ) perétn tne EGT xaw tng enidpachc e
oTn Soun) Twv TANIUOUGY xat TNV eEEMEN TOU YOVBIOUATOS XS xahoTody duvath
TN 0UVOEOT) TV TOPUUETOMVY oL TV AMOTEAEOUATLY. Méypl onuepa, ol neplocdTe-
pol amb Toug ahyoplduoug Yo peAéteg TAYUCULOXTS YEVETIXAC xdvouy €va TAHYOg
ATAOUC TEVUEVKY UTOVEGEWY. T'ar Tapdderyua, 10 EUPEWS YENOWWOTOLOUUEVO AOYLOWL-
%0 MS EMIPENEL TNV LTOOOUT| TOU TANVUGUOY, TOV OUOAOYO AVAGUVOUNGHO, OANS OEV
unolétel xopio yweinr| etepoyévela. ‘Etot, o mAiniuouoc ewpeiton 61t (et o €var 1do-
VIXO Y HpOo OToL Ohat ToL UEAT evOC TANIuoUoY emiTtpéneTtal vo olpdlovTon Y TNy (Bla
mavoTnTo e 0molodNToTE uéAog Tou (Blou TANIUCUOD, Ywels aAANAETBpaoT UeTadd
touc. Emmiéov, n cuumepipopd evOC aTOUOU BEV GUVBEETOL UE TNV OPUOC TIXOTNTY
Tou. T vor avtipetomiotel autd to {Rtnua, vhonotiooue 10 FEG évoy npocoyolwty
YWEXAOV SEG0UEVWY oL TERLAAUBAVEL Evar LOVTELNO ahAnAeniBpaone Uneeutody uTo TNV
oxomd e E€ehixtinnc Ocwpelag Iowyviov. To FEG eiva drdéoyo wg hoyiowxd
avowtol xddwa (GPL V3.0) oto https : //github.com/aggelosk /game.
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Chapter 1

Introduction

1.1 Population Genetics Background

Population genetics deals with genetic differences within and between populations.
Studies in this branch of evolutionary biology examine phenomena such as adapta-
tion, speciation, and population structure. There are two main forces which drive
the evolutionary process of populations, selection and genetic drift [39, 21, 12].

In the population level, the transmission of genetic material to the next gen-
eration is governed by both stochastic and deterministic processes. In finite pop-
ulations, the change of allelic frequencies due to stochastic sampling over gener-
ations can be modeled by the binomial distribution and is called random genetic
drift [39, 21, 22]. Due to genetic drift, identical initial populations, in exactly the
same environment, may become dramatically different over time.

On the other hand, directional selection, or positive selection is a mode of nat-
ural selection in which an extreme phenotype is favored over other phenotypes,
causing the allele frequency to shift over time in the direction of that phenotype,
deterministically. Under directional selection, the advantageous allele increases as
a consequence of differences in survival and reproduction among different pheno-
types. In natural populations, both random genetic drift and positive selection
operate on allelic frequencies simultaneously. Genetic drift becomes more promi-
nent in small populations, whereas positive selection becomes more important in
large populations.

1.1.1 Selection Detection

Some genetic traits make it more likely for an organism to survive and reproduce.
This effect is called directional selection [39, 21] in population genetics and is
described by defining fitness as an individual’s probability of survival and repro-
duction in a particular environment. Positive selection, also known as Darwinian
selection, occurs when an allele is favored by natural selection. The frequency of
the favored allele increases in the population and, due to genetic hitchhiking [49],
neighboring linked variation diminishes, creating so-called selective sweeps. Such
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a process leaves traces in genomes that can be detected in a future time point.
Detecting traces of positive selection in genomes is achieved by searching for signa-
tures introduced by selective sweeps, such as regions of reduced variation, a specific
shift of the site frequency spectrum, and particular Linkage Disequilibrium (LD)
patterns in the region. A variety of approaches can be used for detecting selective
sweeps, ranging from simple implementations that compute summary statistics,
to more advanced statistical approaches, e.g, Bayesian approaches [69], maximum
likelihood-based methods [56], and machine learning methods [55, 62, 70, 66].
When a strongly beneficial mutation occurs and spreads in a population, the fre-
quency of linked neutral (or weakly negatively selected) variants will increase.

The selective sweep model predicts that in recombining chromosomal regions
diversity vanishes at the site of selection immediately after the fixation of the ben-
eficial allele. Due to recombination, genetic diversity is predicted to increase as a
function of the distance to the selected site (scaled by the selection coefficient and
the recombination rate). As a result, the genetic diversity is maintained due to
recombination in genomic regions that are in the proximity of a selective sweep:
Single Nucleotide Polymorphisms (SNPs) are not generated by novel mutations,
but are old mutations that escaped selection because of recombination. This re-
sult is also roughly correct in finite populations [33]. Further signatures of the
hitchhiking effect include (i) shifts in the Site Frequency Spectrum (SFS) of poly-
morphisms such as an excess of low- and high-frequency derived alleles [9, 16], and
(ii) an elevated level of LD in the early phase of the fixation process of a bene-
ficial mutation [72]. It is important to note that the aforementioned signatures
of a selective sweep are predicted when (i) fixation of the beneficial mutation has
just been completed; (ii) recombination rate is positive, i.e., the chromosome is
recombining; (iii) the population size is approximately constant over time; (iv)
the population is isolated; (v) no gene conversion has occurred in the proximity
of the beneficial mutation. Despite the relatively strict assumptions of the selec-
tive sweep model, several tests have been developed that exploit the properties of
the hitchhiking effect to map recent, strong, positive directional selection along
recombining chromosomes of several species.

Searching for strong positive selection in the genomes of individuals of a natural
population has been the focus of a multitude of studies over the past years [2, 52, 67,
4,77, 80, 81]. The goals of these studies have been (i) to provide evidence of positive
selection, (ii) estimate the strength of selection, and (iii) localize the targets of
selection. Thus, these studies aim to provide insights into the genetical mechanisms
of adaptation either in wild populations or during domestication. A long-term goal
is that the genes that experienced recent and strong positive selection could be
identified and the associated functions and phenotypes characterized.
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1.1.2 Phenotype

Selection acts on the phenotype, the composite of an organism’s observable charac-
teristics [40]. Hence, population genetic models assume relatively simple relation-
ships to derive the phenotype from an individuals genotype. When two or more
clearly different phenotypes exist in the same population of a species, the trait is
called polymorphic.

Phenotypic traits which are determined by many genes of small effect unlike
Mendelian traits [41], where the phenotypic state is controlled by just one gene,
are called quantitative traits [41, 18, 11]. Quantitative traits can be of essentially
continuous variability within a population. They can also be discrete but countable
with some traits characterized by only a small possible set of states. Many of the
traits affecting the probability that a predator will capture a prey, are quantitative
traits. The social behaviour of a predator in regard to other predators of the
same population can also be considered, from a certain point of observation, as a
quantitative trait. In this work, we choose to study the effect of the aggression
of a predator as a means of interaction with other predators under the concept of
evolutionary game theory.

1.2 Simulations & Simulated Data

A main goal in population genetics is to understand how, the previously described,
adaptive and non-adaptive processes, such as selection and random genetic drift,
respectively, drive the evolutionary process. Population geneticists attempt to
reach this goal by building mathematical models and developing statistical meth-
ods to test hypotheses based on the analysis of real data. With the availability
of real data, it becomes evident that simple mathematical models are inadequate
to model real data. This often leads to erroneous results and conclusions due to
the fact that the models are too simplistic. A plausible solution to this issue is
the production of simulated data. Simulating data plays a crucial role in modern
population genetics studies. Simulations (i) allow researchers to study scenarios
that are not tractable mathematically, (ii) to test inference algorithms and (iii) fa-
cilitate and inspire researchers to develop analytical models for complex genomic
data [79]. Two of the main categories of genetic data simulations are forward-time
approaches and backward-time approaches [79]. In forward-time simulators an ini-
tial population is constructed at some time point in the past and it evolves forward
in time until the present-day. The main advantage of forward-time simulators is
flexibility, as it allows the generation of complex models. The main disadvantage
is that the whole population needs to be tracked, thus they are expensive in terms
of computational resources.

With the introduction of coalescent theory [37, 28, 74], backward in time ap-
proaches were implemented [61, 43, 27, 63, 23]. The major advantage of backward
simulators over the forward simulators is that only a sample needs to be tracked
(backwards in time), which is typically much smaller than the population size, thus
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both time and space complexity of the algorithm is greatly reduced. However, the
flexibility of backward simulators is limited, thus only relatively simple scenarios
can be implemented. Backward (coalescent) simulators have been widely used for
the analysis of neutral models [12], including scenarios with population size changes
or population subdivision. Due to their computational efficiency, coalescent simu-
lators can used for obtaining estimates of parameters of interest [30, 12, 14].

1.2.1 Other Simulators

Several simulating tools precede the one proposed in this work. Here, an example
of several notable ones in each category(Forward-in-time, Coalescent, Spatial) is
given.

The widely-used coalescent simulation software ms [29] allows for population
substructure, homologous recombination, gene conversion, and population size
changes. However, like most to date algorithms for population genetics studies, its
makes a multitude of simplifying assumptions, as it does not assume any spatial
heterogeneity. Thus, the population is assumed to live in an ideal space where all
members of a deme are allowed to mate with the same probability with any other
member of the deme. Another widely used coalescent simulator is CoalHMM [27],
where the coalescent process is modeled as a Hidden Markov Model (HMM) along
the alignment. This allows the development of efficient inference algorithms com-
pared to sampling based approaches. It models the ancestry of of neighboring
nucleotides back in time using a continuous time approach.

A program which simulates a forward in time model is SFS CODE [24]. Through
SFS CODE the simulation of several populations where each of them can experi-
ence its own demographic history, while following a variety of mutation models.
Male and Female sexes are maintained to allow biased sex - ratios to be simulated.
An additional forward in time simulator which, by using its own programming
language, allows for spatial characteristics is SLIM3 [20]. It is a scriptable simula-
tor [20], that gives a user the ability to construct various models by writing code
in its innate programming language, causing the tool, according to the authors, to
be less restrictive than tools based on command line parameter input and allows
for changes without requiring the user to write code on his own. Despite this
flexibility which SLIM3 offers, for the tool to properly function, the user needs to
learn a programming language that has no use beyond SLIM3 and end up writ-
ing his own code. A software that features both a forward and and a backward
in time approach, and still allows for spatial heterogeneity is SPLATCHE2 [65].
SPLATCHE2 splits the plane into cells forming a 2-dimensional grid. The first
phase of the software, comprises a population which enters the grid and evolves
until a user-defined time point. Then, the second phase uses the demographic his-
tory simulated in the first phase to generate genetic diversity for a sample of the
population. Importantly, the compiled version of SPLATCHE?2 is freely available
for academic purposes but the source code is not available.
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1.3 Evolutionary Game Theory

Individuals best adapted to their environments are more likely to survive and re-
produce. As long as there is some variation between them which is heritable, there
will be an inevitable selection of individuals with the most advantageous charac-
teristics. If the variations are indeed heritable, differential reproductive success
leads to a progressive evolution of particular populations of a species, and popu-
lations that evolve to be sufficiently different eventually become different species.
One of the mathematical tools to study the evolution of species is the evolutionary
game theory (EGT), proposed by Maynard Smith and Price [71], which linked
Darwinian fitness and species evolution. The main idea is that individuals with
different phenotypes represent different strategies regarding interactions between
each other. The result of these interactions is a change of the degree of evolutionary
adjustment by achieving access to food supplies and mates. This received payoff
is what is called fitness in population genetics, and determines the reproduction
rate of that individual. Most games are played between two players [71, 50, 31, 8]
and only a few researchers have focused on multiplayer games instead [57, 19].

One of the main goals in EGT is to find an equilibrium strategy. An evolu-
tionary equilibrium or, as it is most often called, an evolutionary stable strategy
(ESS) [71, 6, 19], can be perceived in two different ways. The first is to find the
probability distribution of all pure strategies in a monomorphic population. The
second is to find the distribution of individuals adopting pure strategies in a poly-
morphic population. In this work, the latter is followed. Once the population at
question reaches an equilibrium, if it does so, there should be either a dominant
strategy that all the individuals have adopted or a non-changing percentage of each
strategy. In multiple strategy games, the equilibrium does not need to feature ev-
ery possible strategy available to the players. One or more strategies may prove
to be dominant to the rest. ESS theory can be extended to sexual populations,
populations in which genetic or geographic relatedness is important, finite popula-
tions, multi-species populations, and populations in which strategies transmitted
from one generation to the next are subject to change because of mutational or
learning effects.

The effects of encounters between individuals in the population are assumed
summarized by a payoff matrix. For n = 2, for example, the payoff matrix A is
a 2 x 2 table recording the outcomes to the user of any of tactics 1 or 2 resulting
from contests with opponents using the same set of tactics. Rows correspond
to the individual’s choice of tactic and columns to his opponent’s choice. By
convention, outcomes of contests contribute additively to eventual reproductive
success, with all reproductive successes being scaled (equally) as to keep the total
population size fixed [26]. If all individuals use a common strategy, the population
will be monomorphic, while populations in which strategy diversity exists will be
polymorphic.

The players in the majority of the Evolutionary Game Theory field are either
cells [6, 31] or molecules [8], as research, especially in the earlier days, revolved
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around simpler organisms. As far as more complex organisms are considered,
several research has been published on predator - prey models [7, 59]. Previous
models of predator-prey co-evolution, involving continuous traits, have been of
two types. ESS models [10, 25, 8] have not included the dynamics of evolving
traits. They have nonetheless assumed that traits and trait-value distributions
will integrate to frequency-dependent fitness surfaces. Despite studying phenotypic
quantitative genetic models [39, 68], only a few very simple and specific models
were investigated. Investigations have been made in predator - prey models that
assume evolution occurs exclusively by the introduction of new mutants with small
effects [48, 47]. Population dynamic equilibrium is assumed to be reached between
the invasions of each new mutant form.

The games in Game Theory are usually played once [64]. Each player selects
a strategy and receives a payoff according to that strategy in respect to the other
players choices. In EGT, games are mostly repeated, i.e., a base game is played
multiple times by the same players. This, (i) gives the players the opportunity
to have a second chance at perhaps attempting a different strategy that could be
more profitable after receiving feedback from a first instance of the game and (ii)
enables for more complex behaviour as a predator may plan ahead [15].

Instead of having the population live in an idea space, the plays of an EG
may reside in an environment that assumes spatial heterogeneity [51]. This, adds
spatial characteristics to the model [38, 12]. Thus, not all players will take part
in a single global game. There will be several ”sub-games” taking place on the
landscape, since players can only interact in proximity to each other. In the spatial
game, the analogue of the frequencies with which different strategies are adopted
at an ESS is the proportion of different strategies present at the spatial equilibrium
distribution [35]. If the spatial distribution is continually changing, the average
proportion of the different strategies.

1.3.1 Strategies

Both in game theory and in EGT, two strategies have been the prime focus of
researchers [64, 17, 50, 46, 44]. Co-operation and competition. There are multiple
ways to perceive how cooperation and competition works. For example, according
to Nowak [50],

a cooperator is someone who pays a cost, c, for another individual
to receive a benefit, b. A defector has no cost and does not deal out
benefits.

One can see that the term competitor is nowhere to be found in the above
statement. EGT occasionally considers as a competitor someone who simply opts
to not simply not cooperate, often described by the term defector.

A different, yet equally plausible, way to view co-operation between individuals
is that co-operation makes better outcomes possible for all than any could obtain
on their own [64, 44]. In predator species for instance, such as wolf packs, one can
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Player1/Player2 ‘ S ‘ C
S p—d+s,p— |p—d,p+s
d+ s
¢ pts,p—d | pp

Table 1.1: Typical two strategy game using the Synergy and Defect Strategies. p
is the reward each player would receive on his own. s is the benefit received from
a co-operator. d is the cost a Synergy player pays to attempt to co-operate.

easily imagine a scenario where multiple predators co-operating with each other
would result in capturing a larger number of preys. This point of view is the one
examined in this study. However, the tendency to antagonize the other players and
benefit from their behavior is often appealing as a means to securing resources,
especially in the cases when they are limited. The competitor in this scenario
can either be a defector, or a more aggressive version. Omne that actively tries
to take resources away from other players. The defector by acting individually,
does not grant the other player(s) the benefit of the co-operation. The aggressive
competitor actively tries to take advantage of other players. This could be by
stealing resources already gathered by others or attacking an individual of the
same species and population.

Player1/Player2 ‘ S ‘ C
S p+s,p+s |p—c,p+tc
C p+e,p—c |d6,6

Table 1.2: Typical two strategy game using the Synergy and Competition Strate-
gies. p is the reward each player would receive on his own. s is the gain from
mutual synergy. c is the gain from exploiting a player that attempts to co-operate.
¢ is a small payoff from mutual competition.
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Chapter 2

Methods

In this thesis, we will study genome evolution as a result of stochastic processes
(random genetic drift) and selection acting on the behavior of individuals in an
Evolutionary Game (EG) context. Since a mathematical theory that incorporates
both stochasticity and selection in an EG is still not developed, we have imple-
mented a simulator to study the problem.

2.1 Evolutionary Game Description

In the game that we propose, the players will be predators hunting prey. In spite
of having both co-existing in the same environment, the work described here, only
focuses on how predators interact with each other and not on their interaction
with the prey species. We study how the inter-species interaction between the
predators affects the structure of the population. In this simulator, the predators’
game will not be a standard repeated one. At each time step, the game is repeated
in next generations by the descendants of the previous generations. The genotype
influencing the strategy of the parents is transferred to the offsprings. Mutation
and recombination may happen, resulting in offsprings with different and/or mixed
strategies, respectively. After the game is played for a given number of generations,
a sample of individuals will be obtained to study its ancestry and analyze their
genome to determine the footprints that such a process leaves on the genome. The
preys and the predators will reside in a 2-dimensional continuous space. This,
adds spatial characteristics to the model [38, 12] and thus, not all players will take
part in a single global game. There will be several ”sub-games” taking place on
the landscape, since players can only interact in proximity to each other.

Thus far, the majority of the research in the field of Evolutionary Game The-
ory has been focused on games with only two strategies where individuals either
cooperate (S) or compete (C) against each other in the attempt to maximize their
fitness [15, 73, 46, 78]. The 2-strategy games have numerous advantages such
as simplicity and fast computation times. However, limiting complex (predator)
species to a binary decision making system should also limit the results which we
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can deduce from simulating complex scenarios. Therefore, in an attempt to tackle
this issue, what is proposed in this work is the addition of a third strategy to try
make make the game more realistic. Besides cooperating with other individual or
competing against them, an individual will have the option to Ignore (I) others
and try to survive by himself. In this game, via Synergy (S) players attempt to
achieve a greater payoff that individually possible. As stated before, competitors
can either be defectors that opt to simply not synergize with others or aggressive
competitors that try and take advantage of the other players. Instead of selecting
either of the two, in this game, they each become a separate strategy. The Ignore
player simply uses the Ignore strategy to avoid interaction with other predators.
The Competitor will actively antagonize other predators to try and maximize his
payoff.

Predators using the ignore strategy will receive a certain payoff p. Predators
that might adopt the Synergy strategy will receive an increased payoff p + s from
interacting with each other. Then, a slightly declined payoff p — € will be awarded
to co-operative individuals due to their interaction with Ignore players. The Ignore
players will receive a payoff of p+ € due to the help received. Finally, the minimum
payoff a predator with the Synergy strategy will receive a payoff of p — ¢ from
attempting to co-operate with a player that is actively trying to get advantage
of the situation, a Competitor. The Competitor will then receive the maximum
possible payoff p+ c. When a Competitor attempts to take advantage of an ignore
player, it is way less successful that in the previous scenario, as the Ignore player
does not bother interacting. A payoff of p 4+ ¢ is then awarded to the competitor
and one of p—( to the predator using the ignore strategy. Finally, for a Competitor
the worst possible outcome is when facing another player with the same strategy.
As both players attempt to antagonize each other rather that capture a prey they
both receive the minimum payoff possible in this game, 6. The above is only
true in two player games, but serves as an example of how the different strategy
players interact. Nevertheless, the principle remains the same for multiple players
interacting. The payoff matrix for a three strategy game can be seen in Table 2.1.

Player1/Player2 ‘ S ‘ I ‘ C
S p+s,p+s |p—e,p+e |p—c,ptc
I ptep—€ | pp pP—GCp+¢
C p+e,p—c | p+¢p—C |9,6

Table 2.1: Proposed game. p is the reward each player would receive on his own.s
is the gain from mutual synergy.e is the small gain an individual gets from a
synergizing player. c¢ is the gain from exploiting a player that tries to synergize. (
is the gain a competitive player gets from a solo player. J is a small payoff from
mutual competition.



2.2. SIMULATOR 11

2.2 Simulator

2.2.1 Setting the Game

A prey and a predator population are initialized on a map. The map is a continuous-
space square of certain user-defined dimensions. After creating the map, preys are
set in certain positions on the map. The number and the position of preys can be
constant during simulation or preys may be erased/added after a certain number
of generations. After the map is generated and populated with preys, predators
are set on various random positions on the map. The user has the option to choose
a starting behavioral strategy for some or all initial predators. The genomic area
affecting the strategy is defined, and the genotype of each individual is initial-
ized accordingly. The positions on the genome influencing strategies can be in
any place (thus, recombination may be important) rather that necessarily being
grouped together.

As a data structure, each predator is attributed by (i) its latitude and longitude
on the map, (ii) its genotype, (iii) its phenotype, (iv) its strategy and (v) its fitness.
The game in which a predator will participate in, will determine its fitness based
on its strategy. Depending on predator’s position on the map, it will be grouped
with other predators around a prey. Not all players will take part in a single
global game. There will be several ”sub-games” taking place on the landscape,
since players can only interact in proximity to each other while grouping around

a prey.

2.2.2 Life cycle

The life cycle of each predator in the model can be described as follows: (i) birth,
(ii) participation in a game, (iii) fitness evaluation, (iv) reproduction and (v) death.
Once born, offspring’s position is a function of parents’ position. The genotype
of the offspring is based on parents’ genotype following the basic rules of genetics
(mutation and recombination). The genotype defines the strategy/phenotype and
the position of the predator determines the game it will participate in. The result
of the game will result in a payoff for the participants and the fitness of each
individual will depend on this payoff. The parents of the next generation will be
chosen based on their fitness value and their position. Generations are discrete
and after reproduction parents are replaced by their offsprings.

2.2.3 Genome representation

The genotype of each individual comprises [ nucleotides from the A,C,G,T al-
phabet. Thus, in a population of N individuals it is possible that at maximum
four nucleotide states are present at each genomic location. In a population ge-
netics context, however, in which a single species is studied, we assume that at
maximum one mutation may occur at each genomic location. This assumption is
called ‘the infinite site model’ and is valid when the genome under study is long
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Figure 2.1: Life Cycle of a Predator

and the mutation rate small. In most biological species, the mutation rate is about
1078 —10~" mutations per base pair, per generation and the genome is hundreds of
thousands to several millions of base pairs (3,000 millions base pairs for humans).

In this system, we do not encode all four states, but we use '0’ for the ancestral
state and 1’ for the derived state. Indeed, most population genetics tools [29,
34, 56, 3] instead of using the nucleotide bases A, C, G, T, use a binary system.
Furthermore, in most population genetics studies, only the polymorphic sites need
to be included in analyses. Neglecting the monomorphic sites and encoding the
DNA base pairs as binary ancestral/derived states reduces the information that
needs to be stored and features a way to compress the genotype as a way to
vastly improve the memory footprint of the tool. Instead of storing each base as
a character with a ’0’ or 1’ value, a whole area of the genotype can be encoded
as an unsigned integer of a certain size (by using the stdint library [13]). By
using a vector of such unsigned numbers, whole genome sequences or large areas
of a chromosome can be efficiently stored. Modifications on the genotype, (See
Section 2.2.7.2), can be applied by using binary operations which considerably
speed up the process.

2.2.4 Burn-in

Results of forward-in-time simulators depend on the initial state of the population.
To alleviate this issue, a burn-in phase precedes the actual process. During burn-in,
predators reproduce neutrally: instead of determining their fitness by participating
in a game, they randomly reproduce for a certain number of generations in which
all predators are equally fit. During burn-in, mutation and recombination events
may take place and the evolutionary process is solely influenced by genetic drift.
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After the burn-in phase is complete, the dependency of the simulation results on
the initialization of the population has been diminished.

2.2.5 Strategy Selection

Each of the predators in the first generation (generation 0) opts to act based on
its initial strategy. A strategy can be either randomly selected or specifically ap-
pointed to any predator. This initialization process helps users evaluate various
scenarios as it impacts the evolutionary process of that population of predators.
There is a 6-step process to determine the strategy of each predator at each gen-
eration after the first. As mentioned before, every new predator is the offspring of
two predators from the previous generation.

Thus, (i) the first step is to determine the genotype of the offspring based on
the genotypes of the parents. The child can inherit an exact copy of the genotype
of each of the parents or, in cases of recombination, the child inherits from both
parents, with each of them giving it a segment of its genotype. In terms of how
the code works, an array of unsigned integers representing the genotype is passed
from one generation to the next. Each unsigned integer can be translated into
a binary number of length equal to the number of bits describing the unsigned
number. As stated before, the 0’s i the array are positions in the genome where
no mutation has taken place whereas the 1’s indicate a position which has had a
mutation. After the genotype of the newborn child has been set, a mutation may
modify a site’s state (see Section 2.2.7.4).

Past the completion of steps (i) and (ii), the genotype of the child is known.
Now, based on the known genotype (iii) we find the positions of the genotype that
affect the strategy. From these positions (iv) the phenotype can be determined.
This is done by either estimating the aggression of a predator as a means of inter-
action with other predators or by a probabilistic model based on different areas of
the genome. For the first method, we determine the phenotype by simply counting
the elements in the genotype array with a value of 1 and dividing by the length
of the array.The percentage number P is then (v) fed to a Normal distribution
with it as a mean value and a user defined variance var. An integer P’ drawn
for this distribution determines the percentage of aggression of the predator at
question, as displayed in equation 2.1. Finally, (vi) we categorize each predator
to a certain strategy depending on its percentage of aggression P’. if P’ is below
a certain threshold TTH Rg we consider the predator to be of the lowest possible
aggression and thus the strategy it goes with is Synergy. If P’ is greater that
THRg but below the threshold T H R¢, the strategy of the predator is Ignore and
if P’ exceeds threshold TH R then we deem the predator as very aggressive and
therefore competitive to other predators.

P' = Gaussian(P,var) (2.1)

The probabilistic model states that (v) the areas of the genome affecting the
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strategy are divided into 3, user-defined sized, parts. Each part of a strategy-
affecting area is assigned to a different strategy. The left part to S, the middle to
I and the right to C We then proceed to count the number of mutations, aka 1’s in
each part. These 3 numbers, each divided by their sum determine the probability
of each strategy being played. (vi) One of the strategies is then randomly selected
based on the above values.

Both models of strategy selection are based on user-defined parameters. Hence,
aggression thresholds of the first method, and the areas of influence on the prob-
abilistic model can be set in a way to make it impossible for one strategy to be
selected making it possible to simulate a two strategy game.

2.2.6 Predator fitness calculation

After the strategy of each predator becomes known, around each prey a game
begins between predators in close proximity. Meaning that for every prey in the
game the predators that exist inside a certain range are found. These predators
are the ones that compete for access to this specific prey. Thus, they are the par-
ticipants in the evolutionary game around this prey. The fitness of each predator
is determined based on the success they have in the game (payoff). Depending on
the strategies of all the players that participated in the game, a payoff ( Ps, P;
and P. ) is granted for each of the three strategies. Then each player receives the
payoff of the selected strategy divided by the number of players that selected that
strategy since they equally split it. As mentioned before, in FEG the predators’
game will not be a standard repeated one because at each time step the game is
repeated in next generations by the descendants of the previous generations.

2.2.7 Predator reproduction

Since the fitness of each predator in the current generation is set, the process
of creating the next generation can start. To improve the time efficiency and
the memory footprint of the code, the new generation (next) will overwrite the
previous one, aka the one before the current. As the population size remains
constant following the Wright Fisher model [29], with the exception perhaps of
bottleneck events, described in Section 2.2.8.1, the number of predators in the
new generation is already known.

2.2.7.1 Parental selection

For each of the newly born predators, the first step is to choose two predators from
the current generation as parents. The common approach is to separately select
two individual predators from the population. Individuals with a higher fitness
have a higher chance to be chosen. Still, with this approach, any predator with
a non-zero fitness has at least a slight opportunity to be paired with any other
predator from the same generation regardless of any other criteria. The approach
followed here, differs from the one described above in two important ways. (i)
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Since there is a spatial parameter in this simulation, predators closer to each other
should have a higher chance to reproduce with each other and, on the contrary,
if the distance between two predators is greater than a certain threshold the two
predators should be unable to reproduce with each other. The threshold above
which the reproduction of the pair is prohibited is equal to the range that is used
for predators to find prey. It was considered logical and fair that the distance
a predator is able travel to track prey should be the same as when attempting
to reproduce. Thus, since a few pairs already have been eliminated as possible
parents, instead of selecting two parents individually each pair of predators has its
own probability of being selected. The total fitness of the pair is the product of
the both predators fitness divided by their distance. After the fitness of each pair
is calculated, one of the pairs with non-zero fitness is chosen.

PairFitness = (Fity x Fity)/(distance + 1) (2.2)

2.2.7.2 Genome Inheritance

For each child predator created in the new generation, after choosing its two par-
ents, what these parents pass on to the child needs to be determined. For terms of
simplicity, in addition to time and memory efficiency, the predator genes are con-
sidered to be haploids instead of diploids. A haplotype is a group of genes within
an organism that was inherited together from a single parent. A haplotype can
describe a pair of genes inherited together from one parent on one chromosome,
or it can describe all of the genes on a chromosome that were inherited together
from a single parent. Thus, in the majority of cases, the child predator inherits
his genotype from one of the two parents.

2.2.7.3 Recombination

FEG also accounts for recombination events during the birth of a predator. If
recombination occurs, the child has inherited both parents. During this biological
process, a child gets different regions of its chromosome from each parent [17, 21].
A cut happens somewhere along the genotype, at a randomly selected position. We
call that position cutting point. The part of the genotype left of the cutting point
comes from one parentand the right part from the other. Without loss of generality,
lets assume that the first parent passes on the left part of the genotype and the
second parent the other. In FEG, since each area of the genotype, consisting of
numerous nucleotide bases, is described in the form of an unsigned integer, the
general area of the cutting point is first determined. For the area at question, we
choose one of the bits describing the nucleotide bases, and name it cutting base.
The recombination happens at that exact place. The number is then divided in
two pieces. The most significant bits (M .S), which are the ones left of the cutting
base and the rest, the least significant bits (LS), including the cutting base. The
M S bits are inherited from the first parent. This is achieved via using the AN D
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binary operation with a number functioning as a mask that has set bits only in
the M S positions. A similar process is followed for the LS bits, inherited from
the second parent.

2.2.7.4 Mutations

Besides selection, genetic drift and recombination an additional phenomenon
which can be observed in populations are the existence of mutations [21]. A muta-
tion is ultimately essential for adaptive evolution in all populations as it causes an
altering of the construction of a gene produced by the modification of single base
units in DNA. In FEG mutations may take place right after a predators genome
has been determined. The user-defined parameter mut_rate determines the prob-
ability that a mutation occurs on the predator at focus. Different methods [42]
might opt to have a parameter determining the probability that a mutation oc-
curs at each site of the genotype of an individual separately following Kimura’s
method [36]. On the contrary, in this work the probability of a mutation describes
an individual’s genotype as a whole. When a mutation occurs, one of the unsigned
integers describing the genome is selected at random. Once selected, an exclusive
OR operation (XOR) is performed with a mask with only one bit set, the one
where the mutation occurs. The result of the XOR operation is the genome of the
child.

Algorithm 1 Forward in Time Process for a Single Generation
Data: predators in current generation, preys, areas of the genome affecting the
strategy, etc
Result: predators in the next generation
while ¢ < prey_num do
find_predators_in_range(preyl[i] );
if found then
| grant_payoff();
end
i++; # move to the next prey
end
create_fitness_map();
while ¢ < new_predator_num do
choose_parents(); # selects the parents based on the fitness of the pair
set_position(); # based on the parents positions
set_genome(); # either copies the genome from 1 parent or recombination
happens. Also applies any mutations that occur.

end
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2.2.8 Events

During the forward in time process there are several events that might occur
besides the ones described in the previous sections of this chapter. Each event
may happen at specific, user-defined, point in time.

2.2.8.1 Population Bottlenecks

Demography poses severe challenges on the selection detection process due to the
fact that it may generate SNP patterns that resemble the signatures of genetic
hitchhiking. In recombining chromosomes, selective sweep detection becomes fea-
sible mainly due to two factors: (i) the fixation of the beneficial mutation, and (ii)
the fact that coalescent events occur at a higher rate in the presence of a sweep
than they do in its absence. Besides recombination and the existence of positive
selection, there are other means to produce similar demographic signatures, such
as population bottlenecks [60]. Assume a bottleneck event that is characterized
by three phases: (i) a recent phase of large effective population size, (ii) a second
phase, prior to the first one, of small population size (the bottleneck phase), and
(iii) an ancestral period of large population size. During the bottleneck phase the
effective population, which is the size of an ideal population that would have the
same level of genetic variance as the real population size [32], is reduced.

It is due to the decrease of the effective population size in the bottleneck phase
that a high rate of coalescent events occur in a relatively short period of time.
Furthermore, lineages can escape the bottleneck, passing to the ancestral phase
of large effective population size, and therefore requiring more time to coalesce.
In a recombining chromosome, genomic regions that are characterized by short
coalescent trees due to massive coalescent events may alternate with genomic re-
gions with lineages that have escaped the bottleneck phase. Such alternations can
generate SNP patterns that are highly similar to those generated by a selective
sweep, yielding the detection process very challenging, if not infeasible [54].

Simpler bottleneck events, featuring a single change in population size also
exist. FEG implements bottleneck events in this simpler form. At a certain
generation, an expansion or a reduction in population size may occur. This, means
that a generation with a population of X predators, will give birth to the next
generation X’ predators, where X’ is not equal to X. Every future generation
from that point will have a population size of X’ unless an additional bottleneck
event takes place. By allowing for multiple bottleneck events, complex bottleneck
scenarios, such as the one described at the beginning of this section can be modeled.

2.2.8.2 Adding and removing preys

An additional way to impact the structure of the population of predators is to
change the population of preys. In every generation, the number of games played
is equal to the number of preys. To participate in one of these games, each predator
needs to be around at least one prey in close proximity. A change in the preys,
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Figure 2.2: Bottleneck demographic scenarios (top panel) may result in similar
genealogies to a selective sweep (bottom panel). Both models may produce very
short coalescent trees. As we move from the selection site, selective sweeps pro-
duce genealogies with long internal branches. Similarly, bottlenecks may produce
genealogies with very long internal branches if the ancestral population size is
large.

would have an immediate impact on the predators close by. Therefore, to study
scenarios under this category, FEG supports prey related events. These events can
be either the addition of a new prey or the removal of an existing one. The position
of the prey to be added /removed can be either random or specified. If specified, the
prey is added to a specific position or a specific prey is removed. If not, either a prey
appears at a random location in the map, or one of the existing is randomly selected
to disappear. Adding a prey to a position causes a major shift to the predators
around it. Now, there is one more game to be played and predators participating
in it. This will have four effects. (i) The predators in the new game will receive a
certain payoff with the strategy each one uses having a different outcome, more or
less favourable, that if they participated in another game. (ii) It is possible that
predators that would be unable to interact with each other due to their positions
may both coalesce in this new prey creating new population dynamics. (iii) The
predators participating in this game would, most likely, have participated in a
different one. Thus, the result of at least one other game is influenced, changing
the fitness of predators in this game. (iv) If we consider predators clustering
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around each prey, by the passage of each generation several sub-populations may
be formed. Theoretically, in each of these sub-population a different strategy could
be beneficial to its members. The addition of a new prey might therefore, create a
new sub-population. Removing an existing prey would cause similar ripples in the
structure of the population as the addition of one. Furthermore, the removal of
an existing prey might, in an extreme but plausible scenario, cause the predators
of this specific sub-population to suddenly become stranded from their primary
resource leading them to extinction impacting the total population the same way a
single generation bottleneck would. The effective population of the first generation
post the removal event, is reduced by the number of predators unable to participate
in any game. Hence, each of the remaining predators has a higher chance of leaving
an offspring since the gene pool is reduced.

2.2.9 Sampling and Output

During the passage of generations, both during the burn-in phase and the regular
one, the structure of the population changes. Bottleneck and prey events further
advocate this change. To make it possible to track these changes, FEG allows
for sampling events to take place. Such an event takes a random sample out of
the current generation of the population and prints the genotype of the selected
predators. Also, it gives as output the percentile strategies from that instance of
the population. The output file follows the format used by ms [29], to be consistent
and comparable with other simulation tools. An example of the output format can
be seen in Figure 2.3.

ms 4 3 -t 5.0
1779988551

i

segsites: B

positions: 0.022Z7 0.5520 0.6190 0.5200 0.5459
10001

00010

00Oo0

01100

i

segsites: 4

positions: 0.6760 O0.7866 0.5066 0.9606
0101

1000

0101

0110

Figure 2.3: ms output example taken from the Hudson paper
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Chapter 3

Results

FEG is a spatial simulator featuring an evolutionary game theory model of re-
production for a predator species. FEG aims at a complex model of evolution
that includes both the ability to simulate quantitative phenotypic traits and the
effect of population structure on genomic diversity, while simultaneously featuring
a method of selection based on the concept of evolutionary game theory. Various
models of evolution were simulated using FEG. One of the main goals in EGT is
to find an equilibrium strategy, i.e., an evolutionary stable strategy on a popu-
lation level, translated as the percentage of individuals in a population adopting
each strategy. Since the strategy is determined by random processes affecting the
genotype, such as mutation and recombination not all game repetitions result in
the same outcome.

3.1 Population genetics summary statistics

The raw data, generated by FEG in ms output format are summarized in a vector
of summary statistics, .9, calculated from each polymorphic dataset. S can be used
for demography inference and for selection detection since summary statistics in
S are affected by the demographic changes the population has experienced and by
the action of positive selection. We used the software CoMuStats [53] to calculate
a multitude of summary statistics from the FEG simulations, such as Tajima’s D
[75], Wall’s B and Q statistics [76], the site frequency spectrum [21], and others.
For example, Tajima’s D takes negative values in an expansion scenario as well as
in regions where positive selection has acted. In contrast, it takes both positive and
negative values, spread throughout the genome when a demographic bottleneck has
occurred. Summary statistics are calculated by the CoMuStats software, which is
a part of CoMuS (Coalescent of Multiple Species) [53].

Currently, the most widely-used software for generating simulated polymorphic
data is Hudson’s ms [29]. Models of neutrality, as well as models of selection, can
be simulated via ms. FEG also features both models. The interaction between
predators models a special kind of selection, where the most fit individuals are

21
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Summary Statistic | Definition

Ow Watterson’s estimator of 6 using the number of segregat-
ing sites and the sample size.
Tajima’s D computed as the difference between two measures of ge-

netic diversity: the mean number of pairwise differences
and the number of segregating sites, each scaled so that
they are expected to be the same in a neutrally evolving
population of constant size.

B and Q the number of pairs of adjacent segregating sites that are
congruent
SFS the number of segregating sites where the derived allele

occurs 7 times out of n samples

Table 3.1: Description of a subset of the summary statistics generated from Co-
MuStats

those who receive the greatest payoff from the game. Since, the behavior of an
individual is based on its genome, the behavior is transfered to the next generation,
affected by the recombination and mutation processes. A burn-in phase, influenced
by random genetic drift, precedes the game to guarantee independence of the
initialization conditions. By using the same parameter values we run both software
and compared the summary statistics describing the results. In Figure 3.1 it can
be seen that indeed FEG is capable of producing a neutral model with results
almost identical to that of Hudson’s ms.

3.2 Two Strategy Games

The majority of evolutionary games involve a two strategy model. Hence, before
including a third strategy to the model, scenarios with only two strategies were
simulated. All three pairwise combinations (Synergy vs Ignore, Ignore vs Compe-
tition and Synergy vs Competition) were examined. We examined the role of the
following parameters for each simulated scenario: (i) the mutation rate per indi-
vidual genome, since the change of strategies emerges from mutations occurring
in the population, (ii) the initial strategies of predators and (iii) the threshold for
which a predator shifts from one strategy to another. For each set of parameters,
we run a total of 100 simulations. One of the questions those simulations aim to
answer is what is the ESS in each scenario.

3.2.1 Synergy - Ignore

Via this set of simulations, the effect of the co-operator vs Ignore player model on
the predator population was tested. Thus, the competitor threshold T'H R was
set to > 1 for all simulations making it impossible for a predator to play the game
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using this strategy. It would require more than a 100% of '1’s in the genotype. The
synergy threshold T'H Rg ranged from 0.2 to 0.8 to make it increasingly tougher for
a predator to deviate from the Synergy strategy. Four different ways to initialize
the population were examined. (i) First, all the predators were initialized as
Synergy players, to test whether aggression would emerge in the population. (ii)
Second, the opposite scenario was examined, initializing all predators as Ignore
players, to test whether a less aggressive strategy would emerge. The third scenario
featured (iii) simulations that started with exactly half the population as Synergy
players and the other half as Ignore. The goal is to study whether the initial
Synergy/Ignore (S/I) state will continue exist in the population in an equilibrium
or, if not, towards which direction the population will shift. Finally, (iv) a scenario
with completely random initialization was implemented. In Figure 3.2, the scenario
that is more suitable for co-operators, with a mutation rate of 0.05 and a T'H Rg of
0.8 is shown when the population is initialized with a single strategy. The opposite
scenario, where ignore players are most likely to persist, with a mutation rate of 3
and a THRg of 0.2 is also examined. For random and balanced initialization both
THRc and THRg are 0.5.

When the initial population comprises only the Synergy strategy, on average,
the 81.84% of the population ends up selecting the Synergy strategy. Predators
with the Ignore strategy do emerge in the population (18.16% on average) (Fig-
ure 3.2). In the opposite scenario, where the initial population purely consists of
Ignore players, the Ignore strategy is only represented by more than 50% of the
population, with a 69.37% representation, when the Synergy threshold is up to
0.35. For all other scenarios, given adequate time, synergy again appears to be the
dominant strategy with 65.67% of the populations selecting it. When a random
initialization is applied, synergy players are the ones that appear to be more fit and
comprise 65.62% of the population. The same outcome can be seen for a balanced
initialization with synergy players being the 83.86%.

3.2.2 Synergy - Competition

In the Synergy - Competition model, the Synergy threshold T"H Rg and the com-
petition threshold T'H R¢ are always equal (thus, Ignore strategy is not possible).
Competition is favored in an environment with all Synergy players, and Synergy
players cannot easily emerge in an all competitive environment. For this scenario,
we started from an initial population of Synergy players with 0% aggression and
tested whether competition would emerge. Since too many mutations would be
required to shift from the all-0 genotype to a genotype associated with compet-
itive behavior, the TH R in this scenario was set to 0.05 (i.e., for a region of
32 bits, 2 mutations are adequate to obtain competitive behavior). Two differ-
ent parameters were tested. First, the mutual competition parameter which is
the penalty for competitors interacting with other competitors was set to either
(i) 0.02 to create a competitor-friendly environment or to (ii) 0.1 to penalize the
existence of multiple competitors in the same environment. For the first scenario
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Figure 3.2: Evolution of a Synergy - Ignore population. Each row represents a
different initialization. From top to bottom, the initial population consists of (
i) co-operators only, (ii) ignore players only, (ii) half of each and (iv) randomly
selected. Left figure shows a mutation rate of 0.005 whereas the right figure is for
a mutation rate of 0.03. Synergy threshold was set to 0.5 for the half and random
initialization. For the Synergy and Ignore ones, left figure showcases a synergy
threshold of 0.2 and the right of 0.8.
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competitors were, as expected completely dominant, ending up comprising the
whole population in 99.8% of the cases. For the 0.02% of the cases not enough
mutations were accumulated for a competitor to emerge, thus resulting in a 100%
Synergy player ratio. For the second scenario, again with the same exception of
an all-synergy population due to lack of mutations, competitors did emerge in the
population. When competitor exceed a certain percentage of, on average, 52.19%,
the penalty for mutual competition exceeds the gain from exploiting synergy play-
ers. Therefore, an equilibrium state is reached where Synergy and Competition
players co-exist, suggesting a scenario of balancing selection driven by frequency
dependent selection, as seen in Figure 3.10.

3.2.3 Ignore - Competition

Competitors are predators that attempt to take advantage of other players. In
contrast, Ignore players, simply, refuse to co-operate. Either of them is the coun-
terpart of Synergy in EFGT studies. To our knowledge, a game studying these two
strategies has not been studied yet. Both of the Ignore and Competition strategies
can utilize the Synergy players to increase their own fitness. However, in a game
involving only Competition and Ignore players, the result is unknown. TH Rg in
this scenario is set as < 0, to prevent a predator for adopting the Synergy strat-
egy. Again, the competition threshold TH R ranged from 0.2 to 0.8 to make
it increasingly tougher for a predator to adopt the Competition strategy by ran-
dom mutations. Starting with a population of all Ignore predators, the question
is whether a more aggressive strategy will emerge in the population. An initial
population of only competitors tests the opposite direction: whether predators
with Ignore traits can emerge and survive on a fiercely competitive environment.
Balanced and random initialization scenarios are also examined.

Player1 /Player2 ‘ S ‘ C
S PP p—cptec
C pte,p—c | 6,0

Table 3.2: Two strategy game using the Ignore and Competition Strategies. p
is the reward each player would receive on his own. s is the gain from mutual
synergy. c is the small gain from exploiting an ignore player. ¢ is a small payoff
from mutual competition.

In the scenario where the initial population is competitive, ignore players
emerge but only as, on average, the 12.24% of the population, regardless of the
mutation rate and the TH R, as seen in Figure 3.4. For the opposite scenario,
where the initial population solely consists of players with the ignore strategy,
they remain the 90.40% of the population, with only a few competitors emerging,
suggesting that the result depends on the initial conditions of the population.

In a scenario with random initialization, we can see that both strategies exist
in population, but competitors do perform worse and decrease to comprise 40.99%
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percentage of the population with the passing of generations. By increasing the
TH R, the percentage of ignore players also increases, as seen in Figure 3.3. For
a balanced initialization, again Ignore players perform better reaching 58.80% of
the population.

Ignore Competition Threshold Effect

ey AN

Strategy
ES compettion

E3 1gnore

Percentage
°
@
3

s

é%%% %%%é

02z 025 03 035 04 045 05 055 06 065 07 075 08
Competition threshold

Figure 3.3: Effect of the competition threshold in an Ignore - Competition popu-
lation with random initialization. Threshold ranges from 0.2 to 0.8.

3.3 Strategy - Percentage of Aggression level

The strategy /phenotype of a predator is derived from its genotype. The percentage
of mutations ('1s’) in the genotype areas that affect the phenotype determines the
selected strategy. Thus, two factors play a major role on the population evolution:
(i) the mutation rate; the higher the mutation rate, the more rapid strategy shifts
and (ii) the thresholds THRg and T'H Rc which determine the ‘genotypic space’
available for each strategy. These two factors can be considered as neutral factors
because they are not related to the benefit (payoff) associated with each strategy.

In Figure 3.5 we can see that, for the scenario in which all predators are initial-
ized as Synergy or Ignore players, mutation rate does have an impact. Similarly,
in a scenario of either random initialization or equal predator distribution of the
three strategies across the population, the mutation rate again does not seem to
impact the process as seen Figure 3.6.

In those scenarios where the initial strategy was Competition, the mutation rate
does affect the results. For a low mutation ratio, the 63.51% of the population
remain as competitors. For a large mutation rate (3% chance per individual for a
mutation to take place), gradually setting a higher TH Rg causes the population
to shift from competitors to synergy players.

With Synergy as an initial strategy for the whole population, the greater the
genotypic percentage the synergy strategy occupies, the more difficult it becomes to
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Figure 3.4: Evolution of an Ignore - Competition population. Each row represents
a different initialization. From top to bottom, the initial population consists of
(i) ignore players only, (ii) competitors only, (ii) half of each and (iv) randomly
selected.

shift from the Synergy into more aggressive strategies independent of the mutation
rate. The Ignore strategy is the one with the most peculiar behaviour. Above a
certain range it appears to consist, on average, a smaller part of the population.

3.4 Three Strategy Games

After studying all the possible pairs of strategies, the effect of all three strategies
co-existing in the population is examined. Again, the effect of (i) the mutation
rate mut_rate, (ii) the initial strategies of predators and (iii) the shift thresholds
from one strategy to another were examined. For each set of parameters, we ran
100 simulations.

The percentage of aggression usually determines the strategy of the majority
of the population. Given a significantly higher percentage than the other two,
each of the three strategies may become the one selected by most of the preda-
tors. In the scenarios, however, where the range of each strategy is balanced,
or close to balanced, the strategy that seems to gain an advantage is the Ignore



3.4.

THREE STRATEGY GAMES

Synergy
« Ignore
= Competition
«©
®4
[}
j=2)
g
£ o]
g o
[
Q
>
o < .
L o \
€ N
=3 -
(7]
S /'/./
o I
l/
=
o
T T T T T
0.2 0.3 0.4 0.5 0.6
Range percentage
e
— Synergy
= Ignore
= Competition
©
®4
[}
j=2)
)
g o |
g o
[
[=1
3 < .
g s T
<
% _—" ./ ‘
= L]
N L]
s
o
=
T T T T T
0.2 0.3 0.4 0.5 0.6
Range percentage
S
el Synergy
« Ignore
. o——"——# Conbetitidh
g b l/
—
@ ——
j=2]
g
s <o |
g o
Q
o
>
D <
9 o
g
7]
~N
p
o
=
T T T T T
0.2 0.3 0.4 0.5 0.6

Range percentage

Strategy percentage

Strategy percentage

Strategy percentage

1.0
I

0.8
I

0.6
I

0.4

0.2

0.0
I

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Synergy

* Ignore

= Competition

N
 m
F——
I/
-
-/'/
—

T T T T T
0.2 0.3 0.4 0.5 0.6
Range percentage

] Synergy
« Ignore
= Competition
i [ IN—
o
[] -/ .
_—" ./
.
1 T T T T T
0.2 0.3 0.4 0.5 0.6
Range percentage
) Synergy
« Ignore
= Competition
,/- ]
/'/.
. !!/.
l/'/
—
1 T T T T T
0.2 0.3 0.4 0.5 0.6

Range percentage

29

Figure 3.5: How increasing the percentage of aggression correlated to each strategy
affects the, on average, appearance of that strategy in the population. For initial
populations that unanimously select each of the strategies. Top row shows Synergy
initialization, middle one shows Ignore initialization and the bottom row shows
Competition. Left figures represent a mutation rate of 0.005 while right figures
represent a mutation rate of 0.03.
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Figure 3.7: Three strategy game with synergy as the initial strategy. The first
figure is for balanced ranges of aggression (0.35 synergy threshold and 0.65 com-
petition threshold). The second figure shows the results of having one strategy,
synergy in this case, correspond to a higher percentage of aggression.

strategy 3.7.Ignore players seem to thrive in these scenarios, possibly due to be-
ing the middle ground. The randomness when deriving the phenotype from the
genotype of a predator, caused by the Gaussian equation 2.1 that is used during
this process, might give an advantage to the Ignore strategy. Players whose geno-
type corresponds to a Synergy or a Competition phenotype may, in rare occasions,
end up choosing the Ignore strategy instead. Naturally, a predator whose geno-
type corresponds to an ignore player may also end up choosing either of the three
strategies depending on the aggression percentage and the randomness factor.

3.5 Detecting Selection

A tool that can be used for Selective Sweep detection is SweeD [56]. SweeD can
parse various input file formats including the output format of FEG. In this work,
we use SweeD to detect traces of selection in the genotype of predators sampled
after the completion of a simulation, i.e., when the game has been finished. Using
genotypic data, SweeD calculates a likelihood score for the possible existence of se-
lection in regions of sampled genotypes. Running FEG under a neutral model 3.1,
provides likelihood scores under the null hypothesis, thus it provides values of the
statistic under the null hypothesis of no selection that can be used to perform
hypothesis testing and calculate threshold values ?7?7. We consider simulation of
the second model that have a likelihood score that exceeds 95% of the likelihood
scores derived from the neutral model to be under selection. Therefore, Using
neutral selection results to calculate the threshold value at a 0.05 level of signif-
icance, the estimated 41.56% of the runs are considered to be under selection in
the FEG model (i.e, the true positive rate). Such a low true positive rate may be
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Figure 3.9: Comparison of the likelihood score distributions produced by SweeD
for a model under neutrality vs other models created using FEG. The plot on
the left showcases a model featuring reproduction that is only influenced by the
distance between the predators. The plot on the right showcases a model featuring
an evolutionary game but no spatial characteristics. For both, the Site Frequency
Spectrum of the neutral model was given as an input to SweeD.

associated with random genetic drift due to small effective population size used in
the simulations (i.e., increased levels of stochasticity).

A related question is which evolutionary factor generates the selective sweep
signal captured by SweeD. Since FEG is characterized by both a spatial and an
EGT component, either or both of these features could be the cause for the selec-
tion signal. The spatial factor is, of course, a non-adaptive factor that is known to
increase the false positive rate of selection inference. To answer this question, we
performed two additional experiments. One that only features the spatial aspects
without the predators participating in an EG and a second that only has the EG
part and lacks the spatial characteristics. For both models compared, the Site
Frequency Spectrum of the neutral model was given as an input to SweeD. For
the spatial only model, we used a single prey, that could be reached from any-
where in the map. Thus, the only parameter influencing the reproduction is the
distance between the predators, that will however be reduced as the generations
progress. Due to the increased fitness a pair of predators closer to each other
receive, the population will end up in a cluster where all predators are very close
to each other, thus leaving behind a similar footprint to the neutral model. For
the EG only model, selection should exist. In the scenario simulated, featuring co-
operators vs competitors, competitors are shown to be dominant. Starting from a
population solely comprised of co-operators, competition emerges in almost every
simulation. However, using SweeD to detect those traces of selection, did not have
the expected results, with the comparison between the neutral model and the one
featuring the EG, showing hardly any evidence of selection.
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In a Synergy - Competition comparison where all predators are initialized with
a zero-level of aggression, the appearance of competitive predators, and the ESS
that will persist in the population depend on certain parameters. These parameters
are (i) the threshold that determines whether the switch in strategies happens, (ii)
the mutation rate that allows for a more or less rapid shift in the population
structure and (iii) the payoff that each synergy grants to the player selecting it.
The latter is what we opt to examine here, thus keeping the other two fixed to
specify on the payoff shift impact on the population. Since the model revolves
around co-operators and competitors the payoff of each predator is influenced by
(i) the gain synergy players receive from co-operating with each other, (ii) the
exploit of the synergy players by the competitors and (iii) the antagonism loss
that competitors receive from co-existing.

Setting different values on these parameters should result in different ESS.
Competitors are by definition [71] favorable vs co-operators. However, a majority
of competitors might change this due to the impact of mutual competition. If the
antagonism loss ends up being greater that the exploit from the synergy players,
the number of co-operators should increase ending up in a scenario of balancing
selection, where both strategies co-exist in a population. On the contrary, if the
above condition is never met, a population of purely competitive predators should
be the result. Both of these scenarios can be simulated by FEG and their effect
on the population can be seen in Figure 3.10.
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Figure 3.10: Comparison of common summary statistics values amongst various
scenarios simulated using FEGThe first column represents a model of neutrality.
The second a model where the population is solely influenced by spatial charac-
teristics. The third column represents a scenario where competitors are clearly
dominant against co-operators. The final column represents a scenario where a
balance between the two strategies is the Evolutionary Stable Strategy.
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Name / Parameters | Initial THRg| THRc| mut_rate| rec_rate | burn
Syn - Ign SynA 500/0/0 0.2 1.1 0.005 0.001 500
Syn - Ign SynB 50000 0.8 1.1 0.03 0.001 500
Syn - Ign IgnA 0 500 0 0.2 1.1 0.005 0.001 500
Syn - Ign IgnB 05000 0.8 1.1 0.03 0.001 500
Syn - Ign HalfA 250 250 0 | 0.5 1.1 0.005 0.001 500
Syn - Ign HalfA 250 250 0 | 0.5 1.1 0.03 0.001 500
Syn - Ign RandA RRO 0.5 1.1 0.005 0.001 500
Syn - Ign RandB RRO 0.5 1.1 0.03 0.001 500
Syn - Com SynA 50000 0.2 0.2 0.005 0.001 500
Syn - Com SynB 50000 0.8 0.8 0.03 0.001 500
Syn - Com ComA 0 0 500 0.2 0.2 0.005 0.001 500
Syn - Com ComB 0 0 500 0.8 0.8 0.03 0.001 500
Syn - Com HalfA 250 0 250 | 0.5 0.5 0.005 0.001 500
Syn - Com HalfA 250 0 250 | 0.5 0.5 0.03 0.001 500
Syn - Com RandA | ROR 0.5 0.5 0.005 0.001 500
Syn - Com RandB | RO R 0.5 0.5 0.03 0.001 500
Ign - Com SynA 05000 0.0 0.2 0.05 0.001 500
Ign - Com SynB 0 500 0 0.0 0.8 0.03 0.001 500
Ign - Com ComA 0 0 500 0.0 0.2 0.005 0.001 500
Ign - Com ComB 0 0 500 0.0 0.8 0.03 0.001 500
Ign - Com HalfA 0 250 250 | 0.0 0.5 0.005 0.001 500
Ign - Com HalfA 0 250 250 | 0.0 0.5 0.03 0.001 500
Ign - Com RandA 0ORR 0.0 0.5 0.005 0.001 500
Ign - Com RandB 0ORR 0.0 0.5 0.03 0.001 500
Syn - Com Select 50000 0.05 0.05 0.02 0.1 500
Syn - Com Neutral | 500 00 0.05 0.05 0.02 0.1 3500

Table 3.3: Parameters used for simulating the various scenarios. The Initial column
described the initial number of predators selecting each strategy. R symbolizes a
random initialization. The three numbers are for Synergy, Ignore and Competition
players accordingly. T'H Rg is the Synergy threshold and T H R the Competition
threshold. Finally, mut_rate describes the mutation rate and rec_rate the recom-
bination rate. The first 3 blocks on the table represent the two strategy runs to
test for ESS. The runs labeled as Select and Neutral are for selection detection.
In the neutral scenario the game was played for 0 generations. For the rest, it was
played for 3000 generations.



Chapter 4

Discussion - Future Work

The interplay between theoretical and empirical models has been the focus of
population genetics over the past decades. Complex stochastic models describe
how population parameters such as recombination or mutation rates might lead
to certain features of genetic polymorphisms [45]. The goal, broadly stated, is
to estimate the model parameters that, under a series of a priori assumptions,
would produce patterns of variation similar to the ones we observe in nature.
Individuals that co-exist in a population interact with each other, in an attempt
to secure resources and reproduce. One way to study these interactions is from
the perspective of EGT, were each individual acts accordingly to a set of possible
strategies. These strategies can be determined by its phenotype. During this work,
we created FEG a forward in time spatial simulator to model the effect of EGT
on a population of predators moving around a set of preys in the map. The pool
of possible strategies consists of the Synergy, Ignore and Competition strategies.

The main goal, as already stated, was the implementation of a tool that can
simulate a non-binary strategy EG with spatial characteristics. Along the devel-
opment of the tool, there are several other accomplishments of this work. The
various scenarios describes in section 3 above, demonstrate the impact of EGT
in population genetics. Furthermore, the simultaneous existence of both ignore
players and competitors in an EGT game has, to our knowledge, never been stud-
ied in a spatial environment. The results described here, highlight the effect of
quantitative traits on the structure of populations. We considered the aggression
of a predator to be a quantitative trait. By shifting the synergy and competition
thresholds accordingly, each of the three strategies is given a certain ‘genotypic
space’. Increasing that rangemakes more probable for the corresponding strategy
to emerge in the population. The initial population compoosition also affects, as
expected, the resulting state of the population. From the scenarios described we
concluded that a co-operator thrives along a majority of other co-operators. The
emergence of competitors leads to either a population of purely Competitors or to
a state of balance between Synergy and co-operation depending on the decrease
in payoff due to mutual competition. Ignore players perform significantly better
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versus competitors but are in a disadvantage vs co-operators. Interestingly, in a
three strategy game, the ignore players seem to be advantageous against the other
two strategies.

Preys in this model, are considered of constant value and position and do
not reproduce or deviate over time, since the model is oriented around preda-
tors rather than preys or on the co-existence of the two species. There has been
a lot of research on predator-prey co-evolution [1, 10, 68, 7]. Previous models
of predator-prey co-evolution involving continuous traits have been classified in
two types. ESS models [10, 25, 8] have not included the dynamics of evolving
traits, but have assumed that traits and trait-value distributions will conform to
frequency-dependent fitness surfaces. Despite studying phenotypic quantitative ge-
netic models [39, 68], only a few very simple and specific models were investigated.
Investigations have been made in predator - prey models that assume evolution
occurs exclusively by the introduction of new mutants with small effects [48, 47].
Population dynamic equilibrium is assumed to be reached between the invasions of
each new mutant form. Thus, a future path of this work will take into account the
prey populations and the co-evolution of the two species. Studying quantitative
Host - Parasite models [5, 58] is especially important, as they may provide insight
to fields such as epidemiology. As one can see, a large part of the future work pro-
posed here, involves further additions or modifications to the current simulation
algorithm. At a certain point, a more general solution should be attempted, one
not necessarily limited to EGT. This simulator already features a forward-in-time
approach, a continuous spatial environment and a reproduction model based on
quantitative phenotypic traits. A population genetics library, i.e, a low level li-
brary which would allow for the easy construction of various functional simulator
could be based on the work described in this M.Sc. thesis.
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