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Abstract

The simultaneous analysis of intra- and interspecies variation is challenging mainly because our knowledge about

patterns of polymorphisms where both intra- and interspecies samples coexist is limited. In this study, we present

CoMuS (Coalescent of Multiple Species), a multispecies coalescent software that can simulate intra- and interspecies

polymorphisms. CoMuS supports a variety of speciation models and demographic scenarios related to the history of

each species. In CoMuS, speciation can be accompanied by either instant or gradual isolation between sister species.

Sampling may also occur in the past, and thus, we can study simultaneously extinct and extant species. Our software

supports both the infinite- and the finite-site model, with substitution rate heterogeneity among sites and a user-

defined proportion of invariable sites. We demonstrate the usage of CoMuS in various applications: species delimita-

tion, software testing, model selection and parameter inference involving present-day and ancestral samples,

comparison between gradual and instantaneous isolation models, estimation of speciation time between human and

chimpanzee using both intra- and interspecies variation. We expect that CoMuS will be particularly useful for

studies where species have been separated recently from their common ancestor and phenomena such as incomplete

lineage sorting or introgression still occur.
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Introduction

Coalescent simulation represents a Monte Carlo process

to generate samples drawn from a Wright–Fisher model

of evolution. In its simplest form, the coalescent (King-

man 1982; Hein et al. 2004; Wakeley 2008) is a retrospec-

tive model of random genetic drift that traces all

sampled alleles back to their most recent common ances-

tor (MRCA). Inheritance is usually depicted as a bifurcat-

ing ultrametric tree; recent extensions allow also for

multifurcations (Λ-coalescent; Pitman 1999; Birkner &

Blath 2008). During the last 15 years, numerous exten-

sions have been proposed, allowing to model processes

such as recombination, gene conversion, past population

size changes, population subdivision, gene flow and pos-

itive selection (Hudson 2002; Hein et al. 2004; Wakeley

2008; Ewing & Hermisson 2010). The coalescent model

tracks only the ancestors of sampled alleles; thus, track-

ing the whole population is not necessary. This property

makes coalescent attractive for computer simulations

that can be used to: (i) verify analytical results, (ii)

explore complex evolutionary models that are mathe-

matically intractable (Kessner & Novembre 2014) and

(iii) construct empirical distributions for summary statis-

tics in a specific evolutionary framework. The most

widely used implementation of single-species coalescent

is HUDSON’S MS software (Hudson 2002). ms can simulate

samples from neutrally evolving populations, allowing

for migration, recombination, gene conversion and

ancestral changes of the population size. Due to its effi-

ciency and flexibility, ms has been used in Approximate

Bayesian Computation (ABC) inference methods to gen-

erate distributions of summary statistics under various

evolutionary models (e.g. Pavlidis et al. 2010; Saminadin-

Peter et al. 2012).

The multispecies coalescent (MSC) (Hobolth et al.

2007; Heled & Drummond 2010) is a retrospective model

of evolution when speciation events have occurred in the

ancestry of the sample. Thus, similar to the single-species

coalescent, it effectively models random genetic drift

within species, but it also accounts for speciation events

at specific time points, after which the two sister species

evolve independently. The MSC has been exploited in
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several different applications of evolutionary biology. In

phylogenetics, it has been used to study the effect of

incomplete lineage sorting (Hobolth et al. 2007; Mossel &

Roch 2007; Heled & Drummond 2010). Degnan & Rosen-

berg (2006) discuss thoroughly the effect of discordant

genealogical histories at multiple loci on phylogenetic

inference, as an effect of incomplete lineage sorting,

mainly between recently diverged species (but also in

deep phylogenies for some combinations of branching

patterns and lengths), horizontal gene transfer or gene

duplication. They conclude by suggesting that discor-

dant genealogies between loci can provide insights into

the (population genetics) processes that take place in the

ancestry of present-day species and help us examine spe-

cies divergence processes or infer parameters such as

ancestral population sizes and divergence times. In pop-

ulation genetics, Hobolth et al. (2007) used the MSC to

infer ancestral effective population sizes and speciation

times from a sample of human, chimpanzee and gorilla.

Furthermore, Zhang et al. (2013) applied MSC simula-

tions to assess the performance of their species delimita-

tion method under various speciation rates. Recently,

Heled et al. (2013) proposed a more realistic implementa-

tion of the speciation in MSC: lineages from different

species remain in partial contact after the speciation

event and gene flow between them is gradually reduced.

The study by Heled et al. (2013) focuses on the effect of

gene flow on phylogenetic inference and migration rate

estimation.

Here, we present an open-source software, CoMuS,

for multiple-species coalescent simulations. CoMuS cou-

ples the core simulation machinery of HUDSON’S MS with

Rambaut and Grassly’s Seq-Gen (Rambaut & Grassly

1997) as well as a variety of algorithms to generate

sequences under various phylogenetic models (Stadler

2009, 2011; Hartmann et al. 2010). The simplest usage of

CoMuS allows the simulation of samples from diverged

species, the simulation of the phylogenetic model

describing the evolution of species as well as the imple-

mentation of the finite-site model. We have implemented

additional features enabling the study of (i) speciation

model parameters such as birth, death, sampling rates;

(ii) gradual isolation between diverging species; (iii)

simultaneous sampling of present-day and archaic

sequences; and (iv) divergent species and diverging

populations within species. CoMuS also implements

population size changes, gene flow between populations

or introgression between species, and population

subdivision.

In addition, we provide an accompanying software,

CoMuStats, that can calculate summary statistics directly

from the output of CoMuS, for each population/species

individually as well as for the entire sample. CoMuStats

can calculate many summary statistics, such as, h value

estimators, Tajima’s D (Tajima 1989), Wall’s statistics (B

and Q) (Wall 1999), FST values (Hudson et al. 1992), site

frequency spectrum (Fisher 1930; Wright 1938) and

others. CoMuS, accompanied by CoMuStats can be used

naturally in an ABC framework, where CoMuS generates

sequence data and CoMuStats calculates summary statis-

tics. Then, R packages (e.g. ‘abc’, Csill�ery et al. 2012) can

be used to estimate parameter values.

We demonstrate the capabilities of CoMuS in several

applications. We show that it can be used to study the

distribution of summary statistics to infer parameters in

an ABC framework and/or to provide insights into the

effects of the finite-site model on summary statistics

(compared to the infinite-site model), the rate hetero-

geneity between sites, the different mutation models (e.g.

HKY; Hasegawa et al. 1985 or GTR; Tavar�e 1986) and

speciation models (e.g. gradual or direct isolation after

speciation). First, we test the results of a species delimita-

tion software (Zhang et al. 2013) and examine the param-

eter values (e.g. speciation rate) that make species

delimitation perform poorly. Species delimitation, based

on genomic information, is currently widely used due to

the availability of massive amounts of genomic

sequences and the need to classify them into known or

new species. Second, we study how the gradual specia-

tion model affects commonly used summary statistics.

Gradual speciation has been recently proposed by Heled

et al. (2013), and its effects on summary statistics have

not been studied yet. Third, we illustrate how to infer

parameter values when ancestral sampling is involved.

With the availability of sequences from extinct species,

we can now infer parameters related to the evolution of

extinct species and their interactions with extant species.

Here, using simulated data and the Approximate Baye-

sian Computation (ABC) framework, we study whether

gene flow between an extinct and an extant species was

present after speciation. Fourth, we use CoMuS in ABC

to infer the speciation (birth) rate of a sample of species.

Fifth, we use data from human and chimpanzee multiple

sequence alignments and estimate their speciation time

as well as the mutation rate. This application demon-

strates the usage of CoMuS on real data. CoMuS and

CoMuStats as well as their manual and examples are

available at http://pop-gen.eu/wordpress/software/

comus-coalescent-of-multiple-species and at bitbucket

(https://bitbucket.org/idaios/comus).

Material and methods

Outline of the workflow

The workflow during a typical multispecies simulation

process performed by CoMuS is described in Fig. 1. The

user either provides the phylogenetic tree or the
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necessary parameters for its simulation. Then, species (as

they are defined by the phylogenetic tree) are treated as

populations and speciation events as population-merge

events (backwards in time) and the construction of the

total coalescent tree follows. When the infinite-site model

is assumed, the result is a polymorphic table similar to

the output of HUDSON’S MS. When the finite-site model is

assumed, sequences are generated either in PHYLIP or

FASTA format.

The guide phylogenetic tree

CoMuS implements the MSC using a guide phylogenetic

tree as input. The phylogenetic tree delimits the species

boundaries; specifically, it determines the speciation time

points. After a speciation event, the user defines whether

isolation happened instantaneously or gradually, as in

Heled et al. (2013). In case of gradual isolation, the gene

flow between sister species is reduced linearly until spe-

cies are completely isolated. The guide phylogenetic tree

is provided either by the user as input or it can be simu-

lated. To simulate a phylogenetic tree, we assume a Yule

process (Yule 1925) with extinction. The following

parameters are needed to simulate a phylogenetic tree:

birth rate b, death rate d, the number of species n and the

proportion r of species sampled (Fletcher & Yang 2009).

Generating the guide phylogenetic tree. To simulate the

guide phylogenetic tree, the following assumptions are

made: (i) all sequences are sampled simultaneously at

the present time point; (ii) both the birth and death rates

are constant; (iii) as the birth–death process does not

require a definite start or an end, one of the following con-

ditions must hold to be able to simulate it according to

our needs: (a) the number of sampled species is fixed; (b)

the process starts at a specified time in the past; (c) the

age of the most recent common ancestor (TMRCA) of the

sampled species is known; (d) the time that the process

starts is fixed at Torigin, and we condition on the sampled

number of species; and (e) the process is not older than a

certain time Toldest. Condition (e) is implemented via a

rejection algorithm, where only times younger than

Toldest are kept. This can be useful when the exact time

point that the birth–death process begins is unknown,

but we know that it cannot be older than a certain time

point. Also, note that the time when the process starts

(Torigin; case (b)) is different conceptually than the time of

the most recent common ancestor of the sample

(TMRCA; case (c)). The latter denotes the root of the tree,

whereas the former denotes the initial point of the pro-

cess which is older than the root of the phylogenetic tree

(the root is the first branching event). Considering (d),

we have also implemented a special case where Torigin is

fixed to the value 1.0 expected substitutions per site. This

condition has been developed first by Yang & Rannala

(1997) and is implemented in INDELIBLE software by

Fletcher & Yang (2009). The guide phylogenetic tree can

also be provided by the user in newick tree format, and

it is required to be rooted and ultrametric.

Mutation model

HUDSON’S MS assumes the infinite-site model to simulate

mutation events on ancestral lineages. Consequently,

each polymorphic site hosts two states. The infinite-site

model is justified in ms because its goal is to model

events that happen within a species boundaries, and

thus, events that are relatively young in the evolutionary

time scale. Indeed, the probability of more than one

mutation at a given site is negligible for realistic muta-

tion rate values. Contrary to single-species coalescent,

multiple mutation events may occur frequently in a mul-

tispecies setup. Thus, CoMuS is able to simulate DNA

sequences given an evolutionary mutation model (JC,

F81, HKY, GTR), as well as two-state SNPs (infinite-site

model). To obtain mutations under the finite-site model

Fig. 1 The workflow during a typical

multispecies simulation with CoMuS.

Dashed-line boxes denote optional steps.

Splits in the workflow denote alternative

paths that a user may follow.
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(and thus to generate nucleotide sequences), CoMuS

adopts the following approach (see also below in Time

unit conversion section): the user provides the guide

phylogenetic tree (or the parameters to construct it) in

typical phylogenetic units (expected substitutions/site).

Then, time is converted to coalescent units to perform

the usual coalescent process. Finally, time is converted

back to phylogenetic units in order to put mutations on

the branches of the total multispecies coalescent tree.

Time unit conversion

The usual time unit in coalescent theory is the number of

generations divided by the effective population size Ne

(or by 4Ne in ms). In other words, if the effective popula-

tion size is Ne, then a time period t = 1 corresponds to

Ne generations. Consequently, the generation of a coales-

cent tree becomes independent of the effective popula-

tion size. On the other hand, in phylogenetics, time is

measured in expected numbers of substitutions per site.

For example, a branch of length 0.1 corresponds to a time

period in which on average 0.1 substitutions per site

occur. To model coalescent processes on a phylogenetic

tree, it is necessary to use identical units for both the

phylogenetic and the coalescent tree. Assume a branch of

length b expected substitutions per site. If the mutation

rate per site and per generation is l, and the number of

generations that correspond to the branch is c, then:

b ¼ lc ! b=h ¼ lc=h ! b=h ¼ lc=4Nel ! =jh ¼ c=4Ne

As c/4Ne represents time in 4Ne generations, we can

divide the branch length (in phylogenetic units; denoted

by b) by h to obtain the branch length in coalescent units

(Degnan & Rosenberg 2009).

Implementation of speciation events as population-
merge events

CoMuS is using the ms machinery to build genealogies.

As, in ms, the concept of species is absent, we treat spe-

cies as distinct populations of a common origin. Thus, a

speciation event involving species A and B is translated

to a merge event between populations. When each spe-

cies (A and B) contain a single population, the process of

merging them is simple and equivalent to a single popu-

lation-merge event in accordance with ms ‘j’ events (im-

plemented by the �ej flag; see Fig. 2A). The situation is

more complicated when a species consists of more than

one population. In this case, by convention, we simulta-

neously merge each population to the population with

the largest index (Fig. 2B). For example, species A with

three populations (pop1, pop2, and pop3) is generated

after a speciation event. Backward in time, pop1 and

pop2 will be fused into pop3.

Gradual isolation after a speciation event

Recently, Heled et al. (2013) presented a model where

speciation may occur over an extended time period. Dur-

ing this period, sister species are able to exchange genetic

material, resulting in a gradual isolation model. Gradual

isolation may be a more realistic model for describing

the speciation of several species, including the one

between human and chimpanzee (Patterson et al. 2006).

Backward in time, there is a time period (specified by the

user) that ends at the speciation time point, in which

gene flow between different species is allowed. To sam-

ple times until the next lineage migration event, we

model migration as a nonhomogeneous Poisson process

with linear intensity (geneflow rate changes as a linear

function of time from 0 to kmax). The rate of the Poisson

process corresponds to the intensity (rate) of the migra-

tion. In brief, we first simulate a Poisson process with a

maximum arbitrary intensity kmax (provided by the user;

by default the maximum rate value equals to 1.0). This

means that we first propose a time t of the next migration

event from an exponential distribution with rate kmax.

Then, if t lies between speciation and complete isolation

time points, we accept t as the time of the next migration

event with a probability p(t) = k(t)/kmax, where k
(t) = kmax (t�tisolation)/(tspeciation�tisolation), where tisolation
is the time where the two sister species become com-

pletely isolated; tspeciation is the speciation time, that is

the age of the node of the guide phylogenetic tree. It has

been shown (Ross 2006) that the process of counted

events corresponds to a nonhomogeneous Poisson pro-

cess with intensity function k(t) = kmaxp(t). In our case,

Fig. 2 Speciation model as implemented in CoMuS. In (A), each

species comprises one population. Therefore, all lineages from

population 1 (pop1) ‘migrate’ to population 2 (pop2) at the spe-

ciation time. In (B), species one consists of two populations,

pop1 and pop2. Thus, two events take place at speciation time:

The lineages of pop1 migrate to pop3, and at the same time, lin-

eages from pop2 migrate to pop3. By convention, at each node

of the guide tree (nodes define speciation events), lineages

migrate to the population with the largest index (here, pop3).
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we are interested only in the first event and the time

needed for the first event to occur. This event represents

gene flow during the postspeciation period, when the

sister species have not been completely isolated. Further

details, as well as the pseudocode of drawing times for

the nonhomogeneous migration process, are provided in

the manual of CoMuS (in Section: Partial isolation after a

speciation event).

Ancestral sampling

Modern population genetics analyses often consist of

both present-day and ancestral samples; for example,

Neandertal sequences together with modern human

sequences (Green et al. 2006; Wall & Hammer 2006; Noo-

nan 2010; Hammer et al. 2011; Sankararaman et al. 2012;

Pr€ufer et al. 2014; Fu et al. 2015; P€a€abo 2015). CoMuS

allows the simultaneous simulation of both modern and

ancestral samples. The implementation starts at the pre-

sent day with the whole data set (modern and ancestral).

However, all evolutionary events (coalescent, recombina-

tion, gene flow, mutations) that involve ancestral sam-

ples or their population are forbidden until sampling

(time proceeds backwards). After sampling (backwards

in time), all evolutionary events take place according to

the model parameters. Further details are provided both

in the manual and the Supplement (Section: Ancestral

sampling in CoMuS, Figs S1 and S2, Supporting informa-

tion). Importantly, our implementation of ancestral sam-

pling time refers to a whole (sub) population sample

(e.g. a sample drawn from a subpopulation of a certain

species). This implementation allows the recombination,

migration, coalescent or mutation rates of other (sub)

populations to remain unaffected.

Processing CoMuS output with CoMuStats

CoMuStats is based on libsequence (Thornton 2003)

implemented in C++ and is able to calculate commonly

used population genetics summary statistics (available

from http://pop-gen.eu/wordpress/software/comus-

coalescent-of-multiple-species). Thus, it allows the study

of marginal distributions or the relations between sum-

mary statistics under various inter- and intraspecies mod-

els. CoMuStats can read the output of CoMuS (i.e. a file

with multiple FASTA alignments separated by ‘//’ or an

ms-like file) and produces a table of summary statistics,

where each line is associated with one data set and each

column with one summary statistic. When more than one

population is generated, summary statistics are calculated

for each population separately, as well as for the total

sample. Besides summary statistics, CoMuStats can calcu-

late the site frequency spectrum for the total sample or for

each population. Finally, given a window length and an

offset value, CoMuStats can calculate the values of sum-

mary statistics in a sliding window. CoMuStats outputs

result in a table format that can be readily processed by R

and produce either marginal distributions or pairwise

scatter plots. CoMuStats can be also used in the ABC

framework for the calculation of summary statistics.

CoMuS as software testing tool

In evolutionary biology, simulations are often used to

test inference tools. If the goal is to infer the value of a

parameter of interest, we simulate data given the value

of the parameter. We can assess how well the inference

tool performs by counting and how often it is able to

report the correct (known) value of the parameter. Here,

we use CoMuS to test the performance of a species

delimitation program, named Poisson Tree Processes

(PTP) (Zhang et al. 2013), with respect to speciation (birth

rate) and population genetics parameters (migration rate

in population substructure). As PTP uses a phylogenetic

tree to classify samples into species, we use both the true

coalescent genealogy as it is produced by CoMuS and

the inferred RAxML (Stamatakis 2014) phylogeny.

Using CoMuS as a part of the approximate Bayesian
computation pipeline

Approximate Bayesian Computation methods generate

samples from the posterior distribution of some parame-

ter of interest. However, in ABC, the posterior distribu-

tion is just an approximation of the true posterior

distribution. In the ABC methodology used in popula-

tion genetics, we first simulate data from an evolutionary

model (e.g. a species with two populations), assuming a

prior distribution for the parameters of interest (e.g. a

uniform distribution for the gene flow between the two

populations). Next, both the observed and the simulated

data are summarized by the same summary statistics.

Simulated data (i.e. the set of their summary statistics)

are sorted according to the (euclidean) distance from the

observed data. Then, based on a degree of tolerance, we

keep the simulated data that are most similar to the

observed data and discard the rest. We use these data to

estimate the posterior distribution utilizing simulated

data using a regression step that corrects for the fact that

they are not identical to the observed data (Beaumont

et al. 2002; Csill�ery et al. 2012; Duchen et al. 2013; Excof-

fier et al. 2005; Gray et al. 2014). Here, we use the ‘abc’ R

package (Csill�ery et al. 2012) for ABC inferences. The

‘abc’ package can perform both parameter inference and

model selection. For model selection, the goal is to esti-

mate the posterior probability of each competing model.

For parameter inference, the goal is to estimate the poste-

rior distribution of parameters of interest. The ‘abc’
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package performs the model selection using three alter-

native approaches. The simpler approach is to use the

rejection method, that is, to approximate the posterior

distribution of each model by counting how often a cer-

tain parameter set (i.e. model) produces simulations sim-

ilar to the observed data. The other two approaches

(multinomial logistic regression and neural networks)

treat the model selection as a discrete response variable

which has to be predicted by the summary statistics (in-

dependent variables). For the inference of parameter val-

ues, ‘abc’ is using a rejection, a local linear regression or

a neural network approach. In all cases, the entire data

set is used as input. However, posterior distributions are

estimated by only a (user-defined) fraction (tolerance

level) of the data that is closer to the observation. Statisti-

cal tests such as cross-validation, goodness-of-fit and

posterior predictive checks are implemented in the ‘abc’

package to assess the quality of the results.

CoMuS can be used as the simulation machinery of

the ABC pipeline. As it can simulate data from multiple

species, it can be used to infer parameters in models

involving more than a single species in complex evolu-

tionary scenarios. In this study, we demonstrate the

usage of CoMuS in ABC by (i) inferring potential ances-

tral gene flow between an extinct species sample and an

extant present-day sample. Also, (ii) we estimate the

sampling time of the extinct species, that is to date the

ancestral sample. We (iii) estimate the speciation time

either on real data, between human and chimpanzee, or

on simulated data.

Results and discussion

The examples provided below demonstrate the usage of

CoMuS as (i) a software testing tool and (ii) a part of the

ABC pipeline. All examples include both within- and

between-species data sets. Scripts and commands used

for the generation of simulated data and analysis can be

downloaded from the website of CoMuS (http://pop-

gen.eu/wordpress/software/comus-coalescent-of-multi-

ple-species).

Testing species delimitation software

We used CoMuS to simulate (i) a sample of 20 sequences

from two species and (ii) a sample of 50 sequences from

five species. We sampled 10 sequences from each spe-

cies. For each of the following scenarios, we modified a

simulation parameter (birth rate in scenario I, population

substructure in scenario II and III). Then, we applied

PTP (Zhang et al. 2013) to perform species delimitation.

PTP requires a phylogenetic tree to perform species

delimitation. We either provide the correct rooted coales-

cent tree produced by simulations or the unrooted

phylogenetic tree inferred by RAxML. In the latter, we

use the option �r of PTP that roots the tree on the longest

branch. All the following results refer to the two-species

case. Results from the five-species scenario are discussed

at the end of the section, as well as in the Supplement

(Section: Species delimitation with five species).

Scenario I—effect of birth rate. Speciation is represented by

a Yule process with birth rate b = {0.002, 0.01, 0.1, 1, 10,
50, 100, 500}. Birth rate represents the rate with which

lineages can split forward in time to generate a new spe-

cies. Extinction rate, d, equals to 0. As we simulate a spe-

ciation process for two species, the process terminates

just before the generation of the third species. Thus, the

lower the birth rate, the more divergent the species are.

The length of the simulated locus is 1000 bp, and we

assume a simple mutation model with equal substitution

rates (Jukes & Cantor 1969). The population mutation

rate for the simulated locus is h = 4Nel = 5, and there is

no recombination.

Scenario II—effect of population structure. For scenario II,

the goal is to test how PTP performs when there is popu-

lation subdivision with various migration rates between

the populations. The simulation parameters are the same

as in scenario I. Here, however, we fix the birth rate to

0.01 (i.e. the phylogenetic model is described by a birth–
death process with birth rate = 0.01 and death rate = 0)

and assume that there is population subdivision in the

first group of sequences (two subpopulations or demes

with five sequences each). Migration rate values deter-

mine the gene flow between the two demes. The smaller

the migration rate, the more isolated the demes are, thus,

increasing the possibility of defining them as separate

species. In this example, migration is symmetrical and

the migration rate is defined by M = 4Nem12 = 4Nem21,

where Ne is the effective population size and m12, m21 are

the fraction of the population 1 that were made by immi-

grants from population 2 and the fraction of the popula-

tion 2 made by immigrants from population 1,

respectively. In general, m12 might be different than m21.

For our simulations, M = {0, 0.0001, 0.001, 0.005, 0.01,
0.05, 0.5, 1}.

Scenario III. The phylogenetic model in the previous sce-

nario is a random process. Thus, if speciation takes place

recently and populations merge relatively late, PTP may

produce erroneous results that are difficult to interpret.

That is, they can be explained either because of late pop-

ulation merge or because of recent speciation. To sim-

plify the model, in Scenario III, we test the performance

of PTP when the phylogenetic model has been fixed (di-

vergence time between two species is set to td = 0.3

expected substitutions per site). As in Scenario II, species
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1 consists of two populations. The migration rate

between the two populations is given by M = {0, 0.0001,
0.001, 0.005, 0.01, 0.05, 0.5, 1}.

Table 1 reports the performance of PTP for scenario I

(effect of birth rate), and Table 2 reports the performance

of PTP for scenarios II and III (effect of population sub-

structure with random simulated phylogenies and given

phylogeny, respectively). Misclassification rate is a func-

tion of the proportion of sequences that have been classi-

fied erroneously. Details, as well as numerical examples,

are given in the Supplement (Section: Testing species

delimitation software; Formula 1 and Box 1). As a gen-

eral rule, we observed that PTP tends to interpret popu-

lations as different species when the migration rate is

low, regardless whether PTP is given the correct coales-

cent tree or the RAxML inferred phylogenetic tree. Inter-

estingly, PTP reports more than 2 species for higher birth

rate values (4.76 on average when birth rate is 500), even

though, in this case, we would expect to underestimate

the number of species. When birth rate value is small,

groupings of leaves in the tree are clear and PTP can fit

two different branching rates along the tree (for specia-

tion and coalescent processes). However, when birth rate

is large, there is no clear distinction between species.

Thus, any grouping of leaves with similar length sepa-

rated by longer branches could be interpreted as a sepa-

rate species. Notably, in the five-species scenario, PTP

overestimates the number of species when the RAxML

tree is used (Table S3, Supporting information). A poten-

tial explanation for this is that RAxML assigns a very

small branch length, b0, between identical sequences.

PTP interprets b0 branches as within-species ancestral

lineages and any longer branches as between-species lin-

eages. Thus, it overestimates the number of species.

The gradual speciation model

Testing the effect of gradual speciation on summary statis-

tics. We assessed the effect of gradual speciation, (grad-

ual isolation between two diverging species) on common

summary statistics, and we compared their values with a

model of instantaneous speciation, with or without sub-

sequent gene flow. Two present-day species were simu-

lated and 10 sequences were sampled from each species.

The birth rate for the speciation model for all scenarios is

0.1, the mutation rate for a region of 1000 bp is 100 and

recombination is absent. For the gradual isolation after

speciation model, geneflow rate drops from a maximum

value of 100 at the moment of speciation to 0 after 0.3

phylogenetic time units. We have also fixed the time for

the TMRCA to 0.5 phylogenetic units. For the model

Table 1 Implementation of speciation with various birth rate

values to test species delimitation software PTP

PTP with true

coalescent tree

PTP; inferred

RAxML tree

Birth rate av. # species (CI);

av. Error

av. # species (CI);

av. Error

0.002 2.04, (1.98,2.09), 0.005 2.02, (1.98,2.06), 0.003

0.01 2.04, (1.98,2.09), 0.002 2.02, (1.98,2.06), 0.001

0.1 2.33, (2.07,2.6), 0.037 2.08, (2,2.16), 0.012

1 2.47, (2.26,2.68), 0.065 2.12, (2.01,2.23), 0.014

10 4.71, (4.03,5.38), 0.262 2.6, (2.36,2.84), 0.078

50 6.02, (5.24,6.8), 0.393 3.7, (3.23,4.17), 0.271

100 6.41, (5.49,7.33), 0.479 4.56, (3.78,5.34), 0.42

500 4.76, (3.85,5.68), 0.612 4.36, (3.58,5.14), 0.661

Table 2 Implementation of speciation with various geneflow levels between demes to test species delimitation software PTP

Simulated phylogenetic tree (scenario II) Provided phylogenetic tree (scenario III)

PTP with true

coalescent tree

PTP; inferred

RAxML tree

PTP with true

coalescent tree

PTP; inferred

RAxML tree

Migration

rate

av. # species (CI);

av. Error

av. # species (CI);

av. Error

av. # species (CI);

av. Error

av. # species (CI);

av. Error

0 3.06, (2.99,3.13), 0.251 3.48, (3.17,3.79), 0.263 4, (3.65,4.35), 0.308 3.3, (3.15,3.45), 0.261

0.0001 3.06, (2.99,3.13), 0.25 4.06, (3.67,4.45), 0.281 3.96, (3.66,4.26), 0.288 3.28, (3.13,3.43), 0.257

0.001 3.12, (2.92,3.32), 0.255 4, (3.62,4.38), 0.267 4.34, (4.02,4.66), 0.299 3.34, (3.14,3.54), 0.261

0.005 2.96, (2.91,3.02), 0.24 4.12, (3.77,4.47), 0.232 3.98, (3.71,4.25), 0.299 3.38, (3.21,3.55), 0.266

0.01 3.02, (2.95,3.09), 0.241 3.74, (3.32,4.16), 0.169 3.6, (3.36,3.84), 0.272 3.28, (3.12,3.44), 0.252

0.05 2.8, (2.67,2.94), 0.175 2.84, (2.51,3.17), 0.102 3.96, (3.62,4.3), 0.28 3.28, (3.05,3.51), 0.215

0.1 2.53, (2.39,2.67), 0.117 2.26, (2.1,2.42), 0.043 4.26, (3.88,4.64), 0.30 3.28, (3.07,3.49), 0.23

0.5 2.27, (2.14,2.41), 0.043 2.08, (1.95,2.21), 0.006 3.68, (3.35,4.01), 0.206 2.64, (2.47,2.81), 0.103

1 2.1, (2.01,2.18), 0.014 2, (2,2), 0 3.4, (3.14,3.66), 0.173 2.8, (2.59,3.01), 0.11

10 2.2, (2.08,2.31), 0.028 2.06, (1.99,2.13), 0.008 3.78, (3.36,4.2), 0.19 2.7, (2.47,2.93), 0.092

100 2.18, (2.05,2.3), 0.023 2.12, (2.03,2.21), 0.013 3.32, (2.92,3.72), 0.143 2.46, (2.28,2.64), 0.047

Columns 1 and 2 refer to a model with unknown phylogenetic tree that is the phylogenetic tree simulated by CoMuS. In columns 3 and

4, the phylogenetic tree is assumed known and given in the command line.
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with constant gene flow after speciation, the geneflow

rate was set to 1. Density plots of eight widely used sum-

mary statistics: hW (Watterson 1975), hp (Tajima 1983),

Tajima’s D (Tajima 1989), Fu and Li D*, Fu and Li F* (Fu &

Li 1993), Wall’s B, Wall’s Q (Wall 1999) and FST (Hudson

et al. 1992) are illustrated in Fig. 3.

As shown in Fig. 3, most of the density plots for the

gradual isolation after speciation are intermediate

between the constant geneflow model and the instanta-

neous isolation after speciation model. For several

summary statistics, such as hp, hW, Wall’s B and Wall’s Q,

the density plot is more similar to that of the constant

geneflow model. Interestingly, however, the FST density

plot is closer to the respective plot from the isolated spe-

cies. Thus, simulations show (at least with the parameter

values tested) that summary statistics do not behave con-

sistently for the gradual isolation model. This might

complicate studies where ABC is used to infer parameter

values or perform model selection; different summary

statistics may support contradictory models.

Fig. 3 Density plots of summary statistics values under a model of gradual isolation (solid line), instantaneous speciation and isolation

(dashed line), and speciation with subsequent continuous gene flow (grey line). Details for the simulation parameters are given in the

text.
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Ancestral sampling

CoMuS is able to simultaneously simulate data from pre-

sent-day samples and ancestral samples. Thus, it can be

used to infer parameter values in studies where ancestral

sampling is involved. Here, we demonstrate the usage of

CoMuS to infer potential ancestral gene flow between an

extant population and an extinct sample. The simulation

scenario is as follows: we assume a sample of 10

sequences from species A sampled at present, and a sam-

ple of 10 sequences from an extinct species B sampled at

time 0.2 (phylogenetic time units). The time of the MRCA

has been set to 0.5 (phylogenetic time units). We assume

no gene flow after speciation between species A and B.

The dendrogram for this scenario is shown in Fig. S2

(Supporting information). Assuming that the above sce-

nario represents the true evolutionary history for extant

species A and extinct species B, our goal is to infer: (i)

whether gene flow between A and B is absent or present

and (ii) the time of sampling of species B. We first assume

that the time of the MRCA (=0.5 phylogenetic units) is

known. Then, we show that in this specific example, the

success of the ABC model choice process depends criti-

cally on the right choice of TMRCA. We tried four values

for the TMRCA: (i) 0.5, which is the ‘true’ value used in

the simulations; (ii) 0.63, which is the value inferred to

reconstruct the phylogenetic tree of the data and the sam-

pling time 0.2 for species B is known; we then used two

overestimated times (iii) 0.9 and (iv) 1.0, to demonstrate

when model choice may fail. The population mutation

rate value, h (=100), is assumed to be known. The length

of the simulated region is 1 kb, and we assumed a muta-

tion model with equal mutation rates between each pair

of bases (Jukes & Cantor 1969). We performed 100 000

simulations under each competing model (with and with-

out gene flow between A and B). In the simulations where

gene flow is present, we assume that it lasts for a time per-

iod equal to the time between sampling species B and the

TMRCA. Then, we applied the ‘abc’ R package (Csill�ery

et al. 2012) to select the model that best explains the data

and to infer the parameters’ values. The total number of

summary statistics (for each species and for the total sam-

ple) is 64. For model selection, we used the ‘mnlogistic’

algorithm and a tolerance threshold of 1%. We ran a

cross-validation (100-fold) to assess whether the two mod-

els can be separated.

Table 3 summarizes the results. For each value of the

TMRCA, we performed a cross-validation test to esti-

mate the true-positive rate for each model (with and

without gene flow). The greater the TMRCA, the greater

the true-positive rate, because gene flow between the

two population lasts for a longer period of time, and

thus, it impacts the summary statistics more extensively.

Therefore, it is easier to distinguish the two competing

models. However, the greater the TMRCA, the more

probable becomes the model with gene flow (i.e. the

wrong model). In the (pseudo-) observed data, there is a

certain degree of divergence between A and B. Diver-

gence is captured by the summary statistics, and the two

models compete to explain it. The greater the assumed

value of TMRCA, the greater the divergence between A

and B is in the model without gene flow. If its value is

greater than a critical value, then the model without gene

flow fails to fit the data. Therefore, the model with gene

flow is favoured (Table 3, column 3).

When TMRCA is 0.5 (i.e. the correct value), and given

the selected model (no gene flow between A and B), the

sampling time of species B is inferred. We used the ‘logit’

transformation of the data with boundaries 0 and 0.5 to

avoid meaningless inference (as we know that sampling

time should be a positive value smaller than 0.5, which is

the time of MRCA). The inferred mean value of sampling

time was about 0.09. This means that the inference is not

very accurate (as the true value was 0.2). It is possible to

increase the accuracy of ABC by selecting more appro-

priate tolerance values and summary statistics and/or

by increasing the number of simulations. Here, however,

our goal is only to demonstrate the usage of CoMuS as a

simulation tool for inferring parameter values and not

the optimization of ABC protocol. Scripts (PERL and R)

used for the analysis are provided at the CoMuS web-

page http://pop-gen.eu/wordpress/software/comus-

coalescent-of-multiple-species.

Estimation of parameters from simulated data

To demonstrate an application of CoMuS on inferring

parameter values in the ABC framework, we simulated

inter- and intraspecies data. We simulated two scenarios:

(i) inference of the birth rate of the speciation process

Table 3 Results of the model choice process. Cross-validation

as well as posterior probabilities of both models are provided.

Model 1 is with gene flow, whereas model 2 is without gene

flow. The correct (pseudo-observed) model is without gene flow

Time of the MRCA

(TMRCA) in expected

substitutions per site

(phylogenetics units)

Cross-validation (true

positive for model 1;

true positive for

model 2)

Posterior

probabilities

(model 1,

model 2)

0.5 0.768; 0.729 0.111; 0.888

0.63† 0.802; 0.821 0.144; 0.855

0.8 0.864; 0.881 0.239; 0.760

0.9 0.894; 0.883 0.698; 0.301

1.0 0.926; 0.911 0.992; 0.007

†The value 0.63 was chosen because it corresponds to the root of

the RAxML phylogenetic tree assuming that species A was sam-

pled at the present and species B at time 0.2.
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using data from two species (10 sequences per species)

and (ii) inference of the birth rate and first speciation

time (i.e. TMRCA) using data from 10 species (10

sequences per species).

Scenario I. For the first scenario, population mutation

and recombination rates were fixed and assumed to be

known (20 and 100, respectively). The length of the

region was set to 1000 bp, and the mutation model

assumes equal rates between all nucleotides (Jukes &

Cantor 1969). The prior distribution of the birth rate b fol-

lowed a log-uniform distribution (i.e. the logarithm of

birth rate was distributed uniformly; log(b) ~ U(0, log

(500))). The log-uniform distribution is useful when the

parameter value spans several orders of magnitude, and

we aim at weighting each order of magnitude equally a

priori. To assess the accuracy of the method, we pro-

duced 1000 pseudo-observed data sets with birth rate

b = 5 for each of them. Both the phylogeny as well as the

coalescent was regenerated for each of the 1000 data sets

(with the given b = 5). In the ABC framework, a parame-

ter can be inferred using the mean, the median or the

mode of the posterior distribution. For each of the

(pseudo-) observed data set, we used the mode as a point

estimator of the birth rate value. Figure 4 shows the (em-

pirical) density of the inferred modes.

Scenario II. For the second scenario, mutation and recom-

bination rates were fixed and assumed known. We gen-

erated 1000 (pseudo-) observed data set; each was

consisted of 10 sequences sampled from each of the 10

species. The length of the region was 1000 bp, the popu-

lation mutation rate for the region, h, was 20 and the

population recombination rate, q, was 100. Birth rate was

set to 80, and we used the JC mutation model (Jukes &

Cantor 1969). The TMRCA (root) of the (pseudo-)

observed phylogenetic tree was 0.033 expected substitu-

tions per site (phylogenetic units). Assuming the above

scenario, we re-estimated the TMRCA and the birth rate

of the speciation process (i.e. b and TMRCA were

assumed unknown) for each of the (pseudo-) observa-

tions. The remaining parameters were assumed to be

known. The prior distribution for the TMRCA was log-

uniform within the range [0.0001, 1]. The prior for the

birth rate b followed a uniform distribution U(0, 100).

Figure 5 shows the empirical distribution of the median,

mean and mode values for each of the parameters as

they were inferred for all the (pseudo-) observed data

sets. All command lines and results are available at

http://pop-gen.eu/wordpress/software/comus-coales-

cent-of-multiple-species.

For both scenarios mentioned above, the inference is

quite precise. The TMRCA in the case of 10 species can

be estimated precisely by the median, the mean or the

mode of the posterior distributions as the vast majority

of the inferred values are between 0.01 and 0.04. Simi-

larly, for the birth rate, the vast majority of the values are

between 60 and 100. Thus, in the scenario with 10 spe-

cies, both of the parameters can be estimated accurately

for most of the (pseudo-) observed data sets. For the two

species scenario, inference is quite accurate, even though

the variance of the estimation is greater. Of 1000 mode

values that we used for inferring the birth rate, 292 are

below 2.5, 533 values are between 2.5 and 10, and 175

values are above 10; true value is 5. Thus, in about half

of the inferences (467 of 1000), the birth rate value is esti-

mated erroneously by at least a factor of 2.

Estimation of the speciation time between human and
chimpanzee

We used 50 homologous gene regions between human

and chimpanzee (kindly provided by Q. Zhu, personal

communication; Table S1, Supporting information). Using

all 50 fragments, we calculated the common population

genetics summary statistics (Table S2, Supporting infor-

mation). Simulations were performed with CoMuS,

assuming a finite-site model (HKY; Hasegawa et al. 1985).

The length of simulated fragments equals the average

length of real fragments (1763 bp). Simulation parameters

are given in Text S1 (Supporting information).

In this demo application, we focused on estimating

the speciation time between two sister species as well as

a total mutation parameter h; therefore, we neglect the

Fig. 4 Density distribution for the modes of the distributions of

inferred birth rate values. We generated 1000 pseudo-observed

data sets with birth rate b = 5. To infer b, we constructed 5000

simulated data in which log(b) ~ U(0, log(500)). For each of the

1000 pseudo-observed data sets, the posterior distribution of b

was computed using the ABC framework (with the ‘loclinear’

method), and the mode values were extracted and used to gen-

erate the plot.
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demographic history of each species. In a real applica-

tion, however, demographic parameters for each species

should also be inferred as they may affect the estimation

of the speciation time, especially in recent speciation

events. Using CoMuS and ABC, it is possible to infer

simultaneously both the speciation time and the demo-

graphic history of each species. However, inferring such

a complicated evolutionary history is out of the scope of

this study.

Simulations were performed by drawing random

variables (log-uniform) for the speciation time (TMRCA)

and the total mutation rate (h). Note that the units of the

speciation time are the usual phylogenetic unit (i.e.

expected substitutions per site). The prior distributions

of both parameters were uniform on the log scale. How-

ever, we have conditioned on the presence of SNPs in

the simulations, in order to be able to compute summary

statistics. Thus, instances of very recent speciation times

that produced no SNPs were not included in the analysis

(i.e. the prior density of recent speciation times is lower).

The median, mean and mode of the TMRCA is 0.0051,

0.0053 and 0.0026 expected substitutions per site, respec-

tively. Regarding h, the median, mean and mode values

are 7.6 9 10�5, 2.1 9 10�4 and 3.5 9 10�5 per base pair,

respectively (Fig. 6). Assuming that the effective popula-

tion size for humans is between 10 000 and 100 000, then

the mutation rate per individual, per bp and per genera-

tion is comparable to the mutation rate estimated by

Fig. 5 Densities of the inferred mean, median and mode of (A) TMRCA and (B) birth rate. We generated 1000 pseudo-observed data

sets with birth rate b = 80 and TMRCA = 0.033. To infer the parameters b and TMRCA, we constructed 100 000 simulated data in which

b ~ U(0, 100) and the log10 (TMRCA) ~ U(0.0001, 1), that is log-uniform in [0.0001, 1]. For each of the 1000 pseudo-observed data sets, the

posterior distributions of b and TMRCA were computed using the ABC framework, and the mean, median and mode values were

extracted and used to generate the plots. Both of the phylogenetic parameters are precisely estimated using the ABC framework.

Fig. 6 Estimation of the speciation time (TMRCA) and the total mutation rate parameter (h). Parameters were inferred using the ABC

framework as it is implemented in the ‘abc’ package of the R statistical language. Simulations were performed by drawing random vari-

ables (log-uniform) for the speciation time (TMRCA) and the total mutation rate (h). The x-axis in both plots is in log scale. (A) Inference

of the speciation time: Dotted line is the prior distribution of the speciation time, dashed line is the distribution of the speciation time

after the rejection step of ABC and the solid line represents the posterior distribution. Prior was uniform on the log scale, but we have

conditioned on the existence of SNPs in the simulations. Thus, instances of very recent speciation times that produced no SNPs were

not included in the analysis (i.e. the prior density of recent speciation times is lower). The median, mean and mode of the TMRCA is

0.0051, 0.0053 and 0.0026 expected substitutions, respectively. (B) Estimation of the total mutation rate h: h corresponds to the parameter

4Nel, where Ne is the effective population size and l the mutation rate for the whole genomic region. In our context, however, Ne reflects

a measurement of the ‘total’ population size. As the species are isolated for a long period of time, Ne is very large (s coalescent is not

allowed). The median, mean and mode of h are 7.6 9 10�5, 2.1 9 10�4 and 3.5 9 10�5 per base pair, respectively.
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other studies (e.g. about 2.0 9 10�8 in Nachman &

Crowell (2000)). We should stress, however, that the total

mutation rate parameter h corresponds to the rate at

which mutations occur on the ancestral lineages and

therefore are responsible for both diversity (within-spe-

cies variability) and divergence (between-species vari-

ability). Thus, we do not need to make any assumption

about the divergence time between human and chim-

panzee (TMRCA) in order to estimate the mutation rate.

Both parameters are inferred simultaneously based on

the within- and between-species patterns of summary

statistics.

Limitations

The current version of CoMuS has some limitations that

we will improve in future versions of the software.

CoMuS can run in a single CPU and is not yet able to

exploit multiple cores. Furthermore, the current version

cannot simulate insertions and deletions (indels). Indels

represent an important class of mutations. However,

incorporating them in the current version of the software

was challenging as their implementation requires a total

redesign of the software to be able to properly handle

overlapping indel events. Future versions of CoMuS will

be able to fully utilize multicore computers and simulate

indel events.

Even though it is possible to generate inter- and

intraspecies data sets using ms and Seq-Gen in a pipeline

(i.e. using the coalescent trees of ms as an input for Seq-

Gen), this process has some limitations and cannot fully

emulate the process that is implemented in CoMuS.

CoMuS has several advantages over the pipeline

approach: (i) it is simpler, as the user does not need to

implement his own scripts to combine ms and Seq-Gen;

(ii) it can simulate the phylogenetic tree under speciation

models with various values of birth rate, death rate and

species sampling proportion. It is also possible to read in

a species tree from the command line; (iii) CoMuS imple-

ments the partial isolation model after a speciation event,

thus allowing two sister species to exchange genetic

material for some time after the speciation event; (iv) it

allows sampling of present-day (extant) and ancestral

(extinct) sequences; and (v) it can simulate sequences

under a site rate heterogeneity model and a proportion

of invariable sites (similar to Seq-Gen).

In our study, we emphasize the usage of CoMuS in an

ABC framework, that is to estimate parameters using

simulated data sets and summary statistics. Recently,

Excoffier et al. (2013) proposed an alternative method to

estimate parameters in complex models by simulations.

In their method, they use the joint site frequency spec-

trum (joint-SFS) between different populations to esti-

mate parameter values in a maximum-likelihood

framework. Even though CoMuS could be used in a sim-

ilar framework (by generating sequence data and then

using a dedicated software to estimate the joint-SFS), we

do not elaborate on this approach in the present study.

This would require an extension of CoMuStats or the

implementation of another software to calculate the

joint-SFS and the likelihoods for each value of the param-

eters. Such an extension is currently out of scope. Heled

& Drummond (2010) have implemented *BEAST (STAR-

BEAST) to infer species trees from multilocus data. *BEAST

implements the multispecies coalescent, but their study

focuses on the inference of the species tree.

CoMus is written in C and it is freely available under

the GNU GPLv3 licence. Its core machinery is based on

HUDSON’S MS (Hudson 2002) and Seq-Gen (Rambaut &

Grassly 1997). Together with CoMuS, we have developed

CoMuStats, a C++ Libsequence software that can calcu-

late common population genetics summary statistics

from multi-FASTA-alignment files. Both programs, as

well as scripts used in the analysis, are available at

http://pop-gen.eu/wordpress/software/comus-coales-

cent-of-multiple-species.
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Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Appendix S1 Ancestral sampling in CoMuS.

Fig. S1 The implementation process of ancestral sampling. Ini-

tially, the simulations of all samples starts at present-day (A), even

though individuals of species 1 (ind1, ind2, . . . , ind5) are actually

sampled at the time denoted by the vertical line ‘sampling time’.

Fig. S2 Example of a simulated multi-species dendrogram, where

species 2 is a fossil (sampled in the past).

Fig. S3 The coalescent tree (A) and the raxml inferred tree (B) for a

simulated dataset of two species, when species 1 is subdivided in

two populations with gene flow M = 10 immigrants per genera-

tion on each population of species 1.

Table S1 List of 50 gene-alignments (human-chimp) used for the

inference of mutation rate and speciation time in human-chimp

phylogeny.

Table S2 List of summary statistics that were calculated for the

ABC analysis.

Table S3 Performance of PTP with five simulated species (10

sequences per species).

Text S1Command line that generates the simulations used for the

estimation of speciation time andmutation rate.
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