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Abstract
Background: Identification of molecular markers for the classification of microarray data is a
challenging task. Despite the evident dissimilarity in various characteristics of biological samples
belonging to the same category, most of the marker – selection and classification methods do not
consider this variability. In general, feature selection methods aim at identifying a common set of
genes whose combined expression profiles can accurately predict the category of all samples. Here,
we argue that this simplified approach is often unable to capture the complexity of a disease
phenotype and we propose an alternative method that takes into account the individuality of each
patient-sample.

Results: Instead of using the same features for the classification of all samples, the proposed
technique starts by creating a pool of informative gene-features. For each sample, the method
selects a subset of these features whose expression profiles are most likely to accurately predict
the sample's category. Different subsets are utilized for different samples and the outcomes are
combined in a hierarchical framework for the classification of all samples. Moreover, this approach
can innately identify subgroups of samples within a given class which share common feature sets
thus highlighting the effect of individuality on gene expression.

Conclusion: In addition to high classification accuracy, the proposed method offers a more
individualized approach for the identification of biological markers, which may help in better
understanding the molecular background of a disease and emphasize the need for more flexible
medical interventions.

Background
The advent of microarray technology along with the expo-
nential accumulation of biological data have recently led
to a massive search for new knowledge that can be used to
improve our quality of life, focusing mainly on the allevi-
ation of health problems [1-10]. Identification of molec-
ular markers for various diseases has become a major issue

in such tasks [11-13]. Molecular markers are genes that
can be used to:

1. discriminate between different disease types

2. predict the outcome of a disease

3. detect sub-categories or states of a disease
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4. pin down independent and possibly unknown proc-
esses which are involved in the generation or the progres-
sion of a disease.

Several marker (or feature) selection methods have been
used in gene expression studies utilizing microarray tech-
nology. Among these, filter methods in which the selec-
tion is independent from the optimization criteria of the
classifier are most frequently used. Such methods have the
advantage of being cost-effective and easy to implement
which make them very attractive for microarray data
experiments where the set of features is in the order of
thousands. Frequently used filter methods include the
two-sample t-test [14-22] Signal-to-Noise [23], TNoM
[24], ICED [25] and the z-test [26] just to name a few.
Wrapper methods on the other hand use similar criteria as
the classifier in order to select optimal features thus max-
imizing classification capacity. Recursive Feature Elimina-
tion is an example of a wrapper method used on
microarray data [27]. A recent study [28] comparing the
performance of filter vs. wrapper methods on microarray
data showed that the latter achieve higher performance
than the former but the improvement in performance is
accompanied by a considerable cost in computational
complexity. While a number of other feature selection
methods have been used in microarray data, only the
aforementioned filter methods are discussed as they are
more relevant to the present work. All of these methods
have a number of shortcomings that are particularly
important when applied to microarray data. For example,
a basic assumption of the t-test and Signal-to-Noise meth-
ods is that data follow a normal distribution, a postula-
tion which is not always valid for microarray experiments.
In fact, a recent publication [29] showed that a yeast gene
expression dataset is better modeled by an alpha distribu-
tion (a = 1.3). The main difference between Signal-to-
Noise and t-test is that the former gives a larger penalty to
genes with high expression variance in both -as opposed
to just one- classes. However, this kind of expression vari-
ability might be important for biological samples, where
only a given condition may influence the expression of
certain marker genes. The main drawback of these meth-
ods is that they both assume a global behavior of a marker
gene across all samples of the same class, which is an over-
simplified assumption for biological samples.

TNoM [24] is a non-parametric test in which an expres-
sion threshold is estimated for each gene and used to
assign samples in one or the other class so that the
number of prediction errors is minimized. Genes that
make the smallest number of misclassifications on a train-
ing set are selected as markers. Similar to Signal-to-Noise
and t-test, this supervised feature selection method
assumes a single expression threshold in selected genes.
The ICED (Independently Consistent Expression Discrim-

inator) method introduced by [25] effectively bypasses
the normality assumption which is required for t-test-like
methods. The method searches for genes which are con-
sistently expressed near a single threshold level in one
class and far from this level in the other class. This prop-
erty adds flexibility by taking into account inherent
genetic variation and environmental influence. Finally,
Recursive Feature Elimination (RFE) [30] is based on find-
ing features for Support Vector Machines that minimize
bounds on the leave-one-out cross validation error. The
method uses exhaustive supervised search for the identifi-
cation of marker genes without making any assumptions
about their statistical properties, thus suffering only from
time and complexity limitations. Almost all of the afore-
mentioned techniques assume that each dataset contains
a number of genes that serve as independent discrimina-
tors for disease categories, using a single expression
threshold. Specifically, a sample belongs to one category
if the expression of a given gene is above threshold and/or
to a second category if its expression is below this thresh-
old. However, this may not always be the case, particularly
in gene expression data associated with complicated bio-
logical processes. The etiology of complex biological
events, such as the progression of healthy to cancerous
cells, or the response of cancerous tissue to a specific treat-
ment can vary considerably among different patients. This
stems from the fact that a large number of molecular proc-
esses are implicated in the pathogenesis of cancer, includ-
ing changes in:

1. signal transduction

2. protein degradation and stability

3. gene regulation

4. immortalization and senescence

5. differentiation

6. cell cycle/checkpoints

7. chemical and radiation- induced mutagenesis

8. metabolism and

9. the stress response (NIH-CE)

The order and magnitude of the change in these processes
is highly probable to differ, even among samples of the
same cancer type. This variability introduces an important
complication: assuming that some/all of the above proc-
esses are induced by (or induce) an alteration in the gene
expression levels, then samples with different gene expres-
sion signatures can develop the same pathogenicity. As a
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result, identifying a single set of gene markers, capable of
accurately characterizing all samples becomes nearly
impossible. On the other hand, one could argue that static
expression patterns provided by microarray experiments
are far from capturing this type of biological complexity.
Therefore, searching for a common set of feature genes
could be the only way to ensure robustness of classifica-
tion as well as biological relevancy of selected features.
However, if gene expression variations among two or
more large groups of patients are due to consistent
upstream effects on the same gene(s), as for example the
activation of different converging pathways or the recruit-
ment of different transcription factors, such changes could
be reflected in static microarray experiments and may
worth being investigated further. Our goal in this work is
to develop a method that utilizes gene expression infor-
mation to characterize the status/category of each sample
while taking into account its individuality, hoping that
this approach will provide a better understanding of the
disease under study. Towards this target, we take into con-
sideration two biologically significant forms of variability
in the data:

1. Samples belonging to the same class may have consid-
erably different gene expression profiles. This variability is
two-fold. First, each sample maybe best characterized by a
(partially or entirely) different set of marker genes. Sec-
ond, each sample maybe best characterized by a different
expression range of a common set of gene features. To
address this kind of variability, we construct a pool of
genes, hereby termed "informative genes", each of which
carries important information with respect to the catego-
rization of some -but not necessarily all- samples. Each
informative gene comprises of one or more "Consistent
Expression Regions" (CERs) that accurately predict the
category of certain samples (see Methods).

2. Variability among samples of the same class may indi-
cate the existence of unknown subgroups that should be
treated separately. The proposed method is particularly
suitable for this kind of variability, as it has an innate
property to identify subgroups based on their characteri-
zation by a common subset of genes or gene expression
regions.

Results and discussion
The proposed method was applied to several publicly
available microarray datasets (most of which can be
found at [31]). A comparison between the classification
performance of this method and that achieved by previ-
ously used techniques is shown in Table 1. As evident
from the results, our method outperforms (in 3/6 data-
sets) or matches (in 3/6 datasets) the performance of all
other referenced methods. However, it should be stressed
that achieving high classification performance was not the
main goal of this work. Similar accuracy on the same data-
sets has also been reported in several recent publications
[32-38]. Perhaps the most important contribution of this
work is that, in addition to high classification accuracy, it
offers a method for identifying genes of high discrimina-
tion value that are most likely to be missed by traditional
feature selection techniques due to their complex expres-
sion profiles (see Methods). As shown in Table 1 (last col-
umn), the number of informative genes that were also
identified by the reference publications is quite high in
datasets where the majority of the selected genes had sim-
ple step-like profiles (1st order genes). However, this over-
lap is significantly smaller in cases containing many
higher-order genes, such as the CNS dataset, since those
features could not be detected in the reference publication
(for respective lists of overlapping genes see [Additional
files 2–6]). Higher-order genes may be particularly impor-
tant for understanding the molecular basis of complex

Table 1: Comparison of Proposed Method Performance against Existing Methods on Publicly Available Datasets. As shown in the 
table, the proposed method achieves a high classification performance on all datasets tested. In particular, the performance is superior 
to that of the referenced method in 3/6 datasets and matches that of the referenced method in the remaining 3 datasets. The last 
column shows the ratio of genes selected by both ours and the cross reference method over the total number of gene-features in the 
cross reference method. Abbreviations: S2N: Signal to Noise, CC: Correlation Coefficient, NA: Neighborhood Analysis, FA: Factor 
Analysis, 2-tail T: 2-Tail Student test, ER: Expression Ratio, K-NN: K-Nearest Neighbors. *Outlier samples for this dataset were 
omitted from the classification in both the reference and our method.

Cross Reference Method Our Method

Data Set Performance Selection/Classification Performance Sensitivity Specificity Common genes
CV Test CV Test

AML/ALL - 29/34 S2N/NA - 33/34 90.9% 100% 48/50
Breast Cancer 47/49 5/5* CC/FA 48/49 5/5* 100%* 100%* 81/100
Lung Cancer - 148/149 2-tail T/ER - 148/149 93.3% 100% 8/8

AML/MLL/ALL 54/57 14/15 CC/K-NN 56/5 4/4, 3/3, 8/8 - - 14/45
CNS 47/60 - S2N/K-NN 55/60 - 85.7% 94.9% 22/100

Lymph Node 31/34 - CC/FA 31/34 - 83.3% 95.4% N/A
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diseases as they can naturally divide samples of the same
class into distinct sub-groups thus highlighting the effects
of individuality on gene expression patterns. Cases of par-
ticular interest that exploit the advantages of our method
are discussed next, while information about additional
datasets used can be found in [Additional file 1].

AML vs. ALL leukemia results
The AML/ALL leukemia data set [23,39] was used to iden-
tify molecular markers that differentiate between AML
and ALL samples. The set contains 47 AML and 25 ALL
samples, divided into a training (27 ALL, 11 AML) and a
test set (20 ALL, 14 AML). 15 AML samples were derived
from patients treated with an anthracycline-cytarabine
regimen and the long-term clinical follow-up was availa-
ble. 8 of these patients failed to achieve remission after
induction of chemotherapy, while the rest remained in
remission for 46 to 84 months. Furthermore, 9 AML sam-
ples were derived from T-cells and the remaining 38 from
B-cells. For a significance threshold ps = 1%, a total of 345
genes (250, 60, 15 and 20 1st, 2nd, 3rd and 4th order, respec-
tively) were selected to form the aggregate classifier (see
Methods) and a performance of 33/34 correct classifica-
tion was achieved. A graphical illustration of this classifi-
cation is shown in Figure 2 of [Additional file 1]. In
addition to class prediction, the method was used to
search for sample sub-groups within the two main class
categories as discussed in the following sections.

Identification of AML sub-groups: "Failure" vs. "Success" 
discrimination
The probability of success is a crucial factor in medical
treatment of leukemia, since many patients respond dif-
ferentially to available treatments. The method was used
to seek for molecular signatures that may provide an
explanation for this phenomenon. Towards this target,
the method was re-trained to discriminate between ALL
and AML classes using all AML samples providing infor-
mation about the failure or success of treatment (8 "Fail-
ure" and 7 "Success") along with 27 ALL samples. Sub-
groups for each class were constructed using tight sets of
marker genes, as described in the Methods section.
Among the resulting AML sub-groups, one was able to dis-
tinguish "Failure" from "Success" cases, with a single mis-
classification, utilizing only seven genes as shown in
Figure 4. The probability of this discrimination being ran-
domly achieved by the specific set of genes was very low
(p = 7 × 10-5). Detailed information about the respective
genes is included in Table 2 of [Additional file 1].

Identification of ALL sub-groups: B-cell vs. T-cell sample 
discrimination
The type of lymphocytes affected (B-cell vs. T-cell) provide
a sub-classification of ALL samples. The method was used
to search for gene markers specific to the two main classes

that may additionally explain this differentiation. Train-
ing and test sets were merged to form a dataset comprising
all 72 samples and the method was re-trained to discrim-
inate between ALL and AML samples. Contrarily to the
"Failure" vs. "Success" discrimination, none of the tight set
of genes was able to distinguish B-cell from T-cell samples
within the ALL class. However, the usage of all higher-
order genes revealed the existence of a single branch
within the dendrogram which contains all T-cell samples
(Figure 5). Detailed information about the genes that sup-
port this grouping is provided in Table 3 of [Additional
file 1].

ALL/MLL/AML leukemia results
The ALL/MLL/AML dataset [40] consists of 72 samples
divided in a training (20 ALL, 17 MLL and 20 AML) and a
test set (4 ALL, 3 MLL and 8 AML). According to [40], lym-
phoblastic leukemias with MLL translocations can clearly
be separated from conventional acute lymphoblastic
(ALL) and acute myelogenous leukemias (AML) suggest-
ing that lymphoblastic leukemias with MLL translocations
constitute a distinct disease, denoted as MLL. Using Leave-
One-Out Cross Validation (LOOCV), our method cor-
rectly assigned 56/57 samples to their respective classes.
To investigate the possibility of MLL samples forming a
distinct category, three pair-wise comparisons in which
two of the groups were merged in one class were per-
formed. For the MLL vs. ALL-AML comparison, a total of
1451 genes (539, 336, 408 and 168 1st, 2nd, 3rd and 4th

order, respectively) were selected to form the aggregate
classifier. For the ALL vs. MLL-AML comparison, a total of
4809 genes (2390, 1498, 597 and 324 1st, 2nd, 3rd and 4th

order, respectively) were selected, while for the AML vs.
MLL-ALL comparison, a total of 7930 genes (3625, 2756,
1113 and 436 1st, 2nd, 3rd and 4th order, respectively) were
selected. The significance threshold for all three compari-
sons was ps = 1%. All resulting dendrograms assigned MLL
samples in a distinct category, which appears more similar
to the ALL than the AML class (see Figure 6). This is in
agreement with a previous study that used Principal Com-
ponent Analysis to show that cases with MLL chimeric
fusion genes segregate according to their lineage [41]. The
expression profile for six of the most important genes that
are differentially expressed between the three classes is
shown in Figure 6, while more detailed information can
be found in Table 5 of [Additional file 1]. Their expression
is consistently low in AML samples, high in ALL samples
and intermediate in MLL samples.

Breast cancer results
The breast cancer data set [42] was used to identify molec-
ular markers that differentiate between ER+ and ER- sam-
ples. The data set contains 25 ER+ and 24 ER- samples,
divided into a training (20 ER+, 20 ER-) and a test set (5
ER+, 4 ER-). For a significance threshold ps = 1%, a total of
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508 genes (334, 153, 16 and 5 1st, 2nd, 3rd and 4th order,
respectively) were selected to form the classifier. Accord-
ing to [42] tumor samples 14, 31, 33 were initially classi-
fied as ER+ by IHC but they were later termed as ER- by
immunoblotting (hereby marked as ER-*) whereas sam-
ples 45 and 46 were determined as ER- by IHC and ER+ by
immunoblotting (hereby marked as ER+**). Our results,
illustrated in Figure 7, are consistent with the results of
[42] except for the classification of sample 14. The expres-
sion profile of sample 14 yields an uncertain prediction

according to [42] while our method assigns this sample to
the ER+ class.

Central Nervous System (CNS) results
The Central Nervous System data set [43] contains 60
biopsy samples taken from patients with various tumor
types including medulloblastomas, primitive neuroecto-
dermal tumours (PNETs), atypical teratoid/rhabdoid
tumours (AT/RTs) and malignant gliomas. Samples were
obtained before the patients received treatment, accompa-

Flowchart of the proposed methodFigure 1
Flowchart of the proposed method. (A) A randomization approach is used to identify homogeneous expression regions of sta-
tistically significant length within each gene. (B) Genes that contain such regions are used to discriminate between class catego-
ries via hierarchical clustering. (C) Detection of sub-groups within each class is then based on informative gene clustering.
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nied with clinical follow-up. Survivors are patients who
are alive after treatment, while failures are those who suc-
cumbed to their disease. For a significance percentage ps =
2%, a total number of 443 genes (170, 82, 51 and 140, 1st,
2nd, 3rd and 4th order, respectively) were selected to dis-
criminate between poor vs. good treatment outcome.
When only first order genes were used in the classifier, the
method achieved a performance of 44/60 correct classifi-
cation. Notice that first order genes roughly resemble
genes that are selected by Signal-to-Noise or t-test as done
in the original publication, thus explaining the similar
classification accuracy (47/60). However, using only
higher order genes (n > 1) resulted in a significant
improvement in discrimination accuracy with 55/60 cor-
rect class assignments. This improvement maybe be due
to the complexity of the particular tumors that belong to
at least four different categories, which can only be cap-
tured by more complex (higher order) gene features. Fig-
ure 6 in [Additional file 1] provides some supporting
evidence for this hypothesis. As evident in the figure, the
fraction of higher order genes among all selected features
is consistently larger in the CNS as opposed to two other
datasets (ALL/AML and Breast Cancer) in which the con-
tent of 1st order genes is much bigger. The statistically sig-
nificant presence of higher order genes in the CNS data
along with the improved classification capacity achieved
with these features suggests an important discriminatory
and perhaps biological role. A list of six representative

higher order genes selected in the CNS dataset is included
in Table 4 of [Additional file 1].

Conclusion
Given a set of tissue-specific microarray experiments per-
formed under different conditions, this work presents a
new method for identifying genes that can explain or get
affected by these conditions. Such informative genes are
shown not only to accurately discriminate between differ-
ent disease types or stages but also reveal the existence of
known or new sub-groupings within a main category and
pinpoint molecular mechanisms that are likely to support
these groupings.

Unlike existing filter feature selection techniques, this
method applies no restrictions to the mean expression
values of informative genes between the different classes.
Informative genes are identified according to the existence
of at least one well defined expression region that corre-
sponds to a significant number of samples of the same
class. The underlying assumption is that if the expression
of a gene in a significant number of same-class samples
ranges within a given interval, then this expression inter-
val may constitute a marker-feature for this sub-group of
samples. Moreover, the use of multiple expression regions
as distinct classifiers for different sub-groups of samples is
based on the hypothesis that a gene does not necessarily
need to be down-regulated (or up-regulated) in one class

A. Procedure for detection of informative genes and class predictionFigure 2
A. Procedure for detection of informative genes and class prediction. The ranked expression profile of gene g (E'g) corre-
sponds to a labeling vector (V'g) which contains two regions that group together a significant number of class 1 and class 0 sam-
ples (50% and 75%). These regions map on two CERs: [39-50] and [58-86], respectively. The gene can thus be used for the 
classification of a new sample S1 in which its expression lies between the respective thresholds of CER2, but not for a sample 
S2. B. Examples of labeling vectors -that correspond to informative genes- identified by our method. Vectors V and VI are of 
particular biological interest as they divide samples of class 0 and 1 respectively, in two distinct sub-groups.
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relative to the other in order to be informative. It is possi-
ble that a gene contains more than one expression region
characteristic of the same class and one or no characteris-
tic region for another class. Such an example is gene
KIAA0016 that codes a mitochondrial import receptor
(TOMM20) [44], whose expression profile in AML vs. ALL

Detection of a sub-grouping of AML samples that clearly sep-arates "Failure" vs. "Success" cases along with supporting genesFigure 4
Detection of a sub-grouping of AML samples that clearly sep-
arates "Failure" vs. "Success" cases along with supporting 
genes. Note that informative genes which support this sepa-
ration are selected solely based on their discrimination 
capacity with respect to AML vs. ALL classification and not 
for the discrimination of "Failure" vs. "Success" samples.
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 53 Success

 29 Failure
 50 Failure
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Discrimination of T-cell vs. B-cell lymphomas within the ALL leukemia samples using higher order genesFigure 5
Discrimination of T-cell vs. B-cell lymphomas within the ALL 
leukemia samples using higher order genes. T-cell samples 
are clustered within a single branch, clearly separated from 
B-cell samples.
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samples reveals that both the lower and the higher expres-
sion values are characteristic of ALL samples while most of
the intermediate values are characteristic of AML samples
(see Figure 5 in [Additional file 1]). Although not directly
linked to cancer, this receptor has been shown to interact
with bcl-2, a central anti-apoptotic protein whose expres-
sion is high in both AML and ALL patients, possibly allow-
ing its insertion to the mitochondrial outer membrane
[45,46]. Interestingly, the expression of bcl-2 serves as a
prognostic marker for remission outcome and long-term
survival in AML [47] but not ALL patients where results
are controversial [48,49]. Our findings open up the possi-

bility of a TOMM20 involvement, through the bcl-2 inter-
action, in the differential resistance to chemotherapy
evident in AML vs. ALL patients. Note that such a gene,
although of high discrimination quality as well as biolog-
ical relevancy, would be missed by most standard statisti-
cal feature selection techniques since its mean expression
value in each class is approximately the same. Another
interesting example is gene SMARCA4 (see Table 4 and
Figure 7 in [Additional file 1]) which is found by our
method to have a 3-step-like expression profile with low
expression values in AML samples, intermediate expres-
sion values in MLL samples and higher expression values
in ALL samples. This gene was previously shown to be dif-
ferentially expressed in MLL vs. ALL samples [40] as well
as between AML and ALL samples [23] but its heterogene-
ous expression profile and discrimination capacity across
all three categories could not be captured in those studies.

The utilization of higher order (multiple-region) genes
often results in a significant improvement in discrimina-
tion performance. A nice example is the classification of
Central Nervous System samples into two classes repre-
senting poor vs. good treatment outcome, where the utili-
zation of higher order genes alone results in significantly
higher accuracy compared to the use of first order genes.
Note that first order (single-region) genes are similar to
those detected by Signal-to-Noise, t-test or ICED methods
as they often have a single-threshold for classification. It is
likely however, that treatment outcome in these patients

Separation of ER- and ER+ breast cancer samplesFigure 7
Separation of ER- and ER+ breast cancer samples. According 
to the immunoblotting classification, our method has two 
misclassified samples, namely 14 and 31. However, both sam-
ples are placed at the furthest end of the ER+ cluster and are 
joined in a single branch, possibly indicating an intermediate 
disease stage.

 14 ER-*
 31 ER-*
 47 ER+
 48 ER+
 45 ER+**
 46 ER+**

 33 ER-
 44 ER-
 49 ER-

Separation of AML, MLL and ALL leukemia samples into three distinct clusters and supporting genesFigure 6
Separation of AML, MLL and ALL leukemia samples into three distinct clusters and supporting genes. A. Note that all three 
dendrograms assign MLL samples closer to ALL samples. B. Expression profiles of six of the most important genes that support 
this clustering. As evident from the figure, different expression intervals correspond to the three different classes for all six 
genes. More information about these genes can be found in Table 5 of [Additional file 1].

ALL SamplesMLL SamplesAML Samples

Lower Expression Values Higher Expression Values

ALL vs MLL-AML

AML

MLL

ALL

MLL vs ALL-AML

AML

MLL

ALL

AML

ALL

MLL

AML vs ALL-MLL

A.

B.
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depends heavily on genes with a more complex expres-
sion pattern that differentially characterizes the heteroge-
neous group of CNS tumors used in this study. A
comparison between AML/ALL Leukemia, Breast Cancer,
and Central Nervous System datasets -all of which are per-
formed using the same microarray chips – reveals several
interesting differences in the number and order of selected
genes. First order genes comprise nearly 70% of the total
number of selected genes in both Breast Cancer and AML/
ALL Leukemia datasets, but less than ~40% in the Central
Nervous System dataset. On the contrary, more higher-
order (4th and 3rd) genes are selected in the Central Nerv-
ous System dataset as compared to the other two, support-
ing the hypothesis that treatment outcome for CNS tumor
patients is characterized by complex gene expression pat-
terns (see Figure 6 in [Additional file 1]). Moreover, a
number of higher order genes selected by our method
have been associated with CNS tumors and treatment out-
come. Interesting examples include the gene encoding for
CD70/CD27 ligand, the antiapoptotic gene seladin-1, the
gene coding for the interleukin-1 receptor (IL1R1) and the
gene coding for the Ser/Thr protein kinase CDK5 (see
Table 4 in [Additional file 1]). CD70 is a member of the
Tumor Necrosis Factor family which is highly expressed in
human brain tumors [50] and was recently shown to play
an immune stimulatory role -preventing tumor growth in
vivo- that encourages its application in tumor immuno-
therapy [51]. The interleukin-1 receptor (IL1R1) is a mem-
brane protein which is variably expressed in different
brain tumors [52] and has also been suggested to play a
role in brain immunotherapy of astrocytomas [53]. The
antiapoptotic gene seladin-1, which is implicated in
Alzheimer's disease and cholesterol metabolism, was also
found to integrate cellular response to oncogenic and oxi-
dative stress [54]. This gene was recently found to be
downregulated in adrenocortical adenomas and carcino-
mas [55] while its differential expression in pituitary ade-
nomas has been suggested to associate with a different
apoptotic response to somatostatin analogs [56]. Cyclin
dependent kinase 5 (CdK5) is a proline-direct protein
kinase that is most active in the CNS and has been impli-
cated in certain neurodegenerative diseases. It was
recently shown to facilitate the progression of apoptosis
by regulating the activity of the tumor suppressor protein
p53 [57], the expression of which has been associated
with poor prognosis in primary CNS diffuse large B-cell
lymphoma [58]. In addition, overexpression of both p53
and bcl-2 proteins has been associated with ominous
prognosis in pediatric glioblastoma multiforme tumours
[59]. Taken together, these findings suggest that genes
with heterogeneous expression detected by our method
are not simply the result of technical or biological irrele-
vant variation but they can have an important biological
role.

In addition to prediction accuracy, higher order genes
may reveal a general tendency of samples to cluster in sub-
groups within a given category. A characteristic example is
given by the separation of T-cell from B-cell samples
within the ALL leukemia class. Note that this separation is
achieved using informative genes selected according to
their discrimination capacity with respect to the original
class distinctions, in this case AML vs. ALL. Interestingly,
among the seven identified genes that support the T-cell
vs. B-cell separation (see Table 3 in [Additional file 1]),
gene X00437 corresponds to a protein that specifies part
of the human T-cell receptor [23]. While it is expected that
such a gene would support T-cell vs. B-cell discrimination,
it is not intuitive that it would be selected as an AML vs.
ALL classifier. In a similar context, our technique is able to
separate "Failure" from "Success" AML samples with high
accuracy as well as identify the genes that achieve this sep-
aration (see Table 2 in [Additional file 1]). Comparable
discrimination results were previously achieved with
other methods but only when treating these samples as
distinct classes and selecting genes that specifically dis-
criminate between the two [26,60] (also see Figure 3 and
Figure 4 in [Additional file 1]).

In conclusion, this work describes a new method for the
identification of informative genes that takes into account
inherent genetic variation in disease samples which may
be characteristic of certain sub-groups within a disease cat-
egory. This relatively simple approach, in conjunction
with a committee voting classifier allows for improved
class prediction as well as identification of interesting dis-
ease sub-groups. More importantly, our method allows
the detection of marker genes that support these sub-
groupings, thus possibly shedding some light on the
underlying molecular mechanisms involved in disease
related processes and providing a new tool that may facil-
itate efforts towards individualized medicine.

Methods
Identification of informative genes and construction of 
gene pool
The proposed algorithm uses a training set comprised of
labeled samples belonging to two categories (0 or 1) to
construct a pool of informative genes that exhibit Consist-
ent Expression Regions (CERs). CERs are defined as the
intervals enclosing the expression (sorted in ascending
order) of a given gene in a significant number of training
samples which belong to the same category. Examples of
informative genes and associated CERs are shown in Fig-
ure 2. The consistency of a CER is given by the fraction of
these majority samples in CER, normalized by the size of
their respective category. Only genes with at least one CER
whose consistency value is greater than a statistically
defined threshold, ps, are used to construct the pool. The
order of each informative gene with respect to a category
Page 9 of 14
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(0 or 1) reflects the number of class-specific CERs it con-
sists of (for more details about the estimation of consist-
ency thresholds and gene orders see [Additional file 1]).

The outcome of this step is the identification of category-
specific classifiers formed by expression regions in the
profiles of selected genes as opposed to a single expression
threshold defined by most existing feature selection meth-
ods. As a result, a gene exhibiting a class-specific CER can
be used to reliably assign a label of the same class to any
new sample in which its expression lies within the bound-
aries of this CER. Note that any informative gene can pro-
duce several different regional classifiers, according to its
CER assortment.

The contribution of these thresholded expression regions
could be twofold. First, their mapping to a limited sample
number of the same class may provide insights about the
complexity of a given disease category. For example, CERs
of the same category may reflect differences in the order
and/or extent that various cancer-associated molecular
processes are utilized to induce qualitatively the same
phenotype but with a different gene expression pattern. It
is thus conceivable that CERs can detect subgroups within
a single class. Second, the classification accuracy of these
regions, which is overlooked by existing methods focus-
ing on the expression profile of a gene as a whole, can be
used to construct a potentially more powerful classifier
that takes into account the individuality of different sam-
ples.

Class prediction using CERs and hierarchical clustering
To classify unseen samples into their respective categories,
the method combines subsets of informative genes to
form an aggregate classifier. For a two-class problem, the
aggregate classifier consists of two -possibly overlapping-
lists of informative genes. Each list consists of the set of
informative genes that contain CERs specific to each class.
If an informative gene contains at least two CERs, each
corresponding to a different class (Figure 2), it serves as a
classifier for both classes. For the categorization of each
new sample the method proceeds as follows: first, the sub-
sets of genes that are able to predict its category are
retrieved from each class-specific list. Their respective
CERs are then used to assign a class label to the new sam-
ple thus generating two lists of 0 and 1 votes, respectively.
At this stage, the votes correspond to the informative
genes containing the CER and not the CER itself. The pro-
cedure is repeated for all unseen samples and the class
assignments for each sample are fed to a modified Man-
hattan distance to estimate dissimilarity scores between
samples. Specifically, the distance between two samples a
and b is defined as:

D(a, b) = T - C(a, b)  (1)

where T is the total number of informative genes which
constitute the aggregate classifier and C(a, b) is the
number of genes that give the same vote (0 or 1) for both
samples a and b. Alternatively, a similarity score between
samples a and b is given by C(a, b). The determination of
similarities between samples is graphically illustrated in
Figure 3. Finally, the dissimilarity scores between all sam-
ples are fed in the publicly available phylogenetic software
MEGA2 [61] to build a hierarchical tree. The method's
performance is measured as its discrimination capacity on
the set of unseen samples.

Comparison to Entropy-based methods
Since the proposed method may sound similar to
Entropy-based discretization methods frequently used in
machine learning problems, we include a comparison
between these two approaches.

In an information-based framework, Shannon's entropy
[62] can be used for the evaluation of the information
content of a given gene. The entropy of a particular k class
input (k possible states) is given by the formula:

where pi corresponds to the probability of the state i. In the
analysis presented here k equals 2, since all datasets were
broken down to two-class discrimination problems.

There are several entropy-based discretization methods,
including the Maximum entropy [63], D2 [64], and
Entropy-MDLC [65] among others and quite a few have
been used in microarray data analysis [24,66,67]. Maxi-
mum entropy discretizes the continuous variables (in this
case the gene expression profiles) according to a mini-
mum loss of information criterion. D2 partitions the set
of values into two subsets that maximize the information
gain after the binary partition. Entropy-MDLC uses the
class information entropy of candidate partitions to select
threshold boundaries for discretization. It finds a single
threshold that minimizes the entropy function over all
possible thresholds and recursively applies this strategy to
both induced partitions. The recursive discretization is ter-
minated when the Minimum Description Length criterion
is satisfied. The Entropy-MDLC method, which allows the
generation of multiple intervals, is more similar to the
method introduced in this paper. However, several differ-
ences can be pointed out between entropy-based
approaches and ours.

1. Entropy-based methods consider all possible states
(classes) of the input data in order to estimate discretiza-
tion thresholds and identify informative genes. On the
contrary, the method presented here detects genes whose

H p pi
i

k

i= − ( )
=
∑ log ( )2

1
2
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expression within a well defined region consistently maps
to a single class, without taking into account the remain-
ing classes.

2. Entropy-based methods usually search for a single
expression threshold that minimizes the entropy of a dis-
cretized gene. Although multi-interval discretization can
be achieved with iterative application of entropy-based
minimization methods [65], such an approach is of high
computational cost. The basic idea of this method is to
partition a range of real values into a number of disjoint
intervals such that the entropy of the intervals is minimal.
However, this method also considers minimization crite-
ria that involve both classes for each interval.

3. Finally, the method presented here does not utilize any
minimization criterion but searches for statistically signif-
icant homogeneous regions (CERs) in which no other
state can occur as opposed to entropy-based methods
where a few instances of other states are allowed.

Detection of sample sub-groups
Identification of sub-groups within a given disease class
can be of major importance as it may pinpoint patient
subcategories that respond differentially to a given treat-
ment. To detect such sub-groups, the method utilizes
informative genes that inherently separate a main class
into two or more clusters by grouping different subsets of
samples in different CERs. An example is given by gene VII
in Figure 2, whose expression profile separates class 1 sam-
ples into two distinct sub-groups. Down-regulation of this
gene is characteristic of the first while up-regulation is
characteristic of the second sub-group. For the detection
of within class sub-groups, the method combines all
higher order informative genes (i.e. genes that contain
more than one CER corresponding to the same class) or
just a selected subset of them.

Using all genes with multiple single-class CERs
In this approach, all informative genes that contain at
least two CERs specific to the same class (n > 1) are uti-
lized. For each informative gene, samples that lie within
different CERs are assigned to different sub-groups, using
a voting scheme similar to that of the class prediction task.
However, in contrast to the class prediction task, CERs of
the same gene now offer a different vote which can take a
value raging from 0 to the gene order. Resulting voting
lists are then used along with the modified Manhattan dis-
tance to construct a dendrogram. This approach is partic-
ularly suitable for datasets in which the actual number of
class categories is larger than originally suggested, as for
example the classification of ALL/MLL/AML leukemia
samples shown in Figure 6.

Using a tight set of genes
In the second approach, only genes of the same order are
used to identify sample sub-groups (as shown in Figures 4
and 5). Reversely, the method identifies genes that sup-
port a pre-existing sub-clustering of samples. These sub-
groups, which may be irrelevant to the original classifica-
tion, are often supported by only a small -tight- set of
genes. A tight set consists of same-order genes whose
expression in the same -significantly large- set of samples
is bounded by exactly one CER per gene. More impor-
tantly, their expression in the remaining samples must
range over several other CERs. The reasoning for this sec-
ond constraint is that a gene which clusters in one region
samples that lie in various regions of other genes has a
tendency to distract the grouping achieved by these genes
and should thus be omitted from the set. Notice that this
procedure is applied to each class separately and thus
genes used are all specific to the same class. For a more
detailed explanation regarding the construction of tight
sets of genes, see [Additional file 1].

Comparison to bi-clustering methods
The approach described above for the identification of
sample and gene subgroups is fundamentally different
from existing bi-clustering methods. Bi-clustering meth-
ods allow for the identification of sets of genes that share
compatible expression patterns across subsets of samples.
These methods group samples and genes simultaneously.
According to [68], if A is an expression matrix, with X
genes and Y conditions then aij represents the expression
of gene i at condition j. I ⊂ X and J ⊂ Y denote a subset of
genes and conditions respectively. The pair (I, J) specifies
a submatrix AIJ or a bi-cluster AIJ and H(I, J) represents the
following mean squared residue score:

where aiJ, aIj denote the average of the ith gene and jth con-
dition respectively and aIJ the average of all elements in
the bi-cluster. This score is always positive, and the goal of
the analysis is to find the largest submatrix with the lowest
score or to find the bi-cluster whose score is lower than a
certain threshold. This submatrix denotes a subset of
genes with similar "behavior" in a subset of conditions. In
a similar concept, the method presented here aims to con-
nect a certain subset of genes with a specific subset of con-
ditions in order to detect subgroups of conditions (or
samples). However the two methods use totaly different
criteria for the identification of similarly "behaving"
genes.

1. In bi-clustering methods, selected genes within a bi-
cluster must share similar expression profiles. In the pro-
posed method these genes are only required to map

H I J
I J

a a a aij iJ Ij IJ
i I j J
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approximately the same set of samples within a single
CER, irrespectively of the expression values contained in
this CER. We term these regions "significantly overlap-
ping."

2. In addition to this similarity criterion, the proposed
method demands that selected genes do not contain more
than one significantly overlapping CER for a specific sub-
set of samples. It is however possible to have several sig-
nificantly overlapping CERs within the same subset of
genes as long as they contain distinct subsets of samples.
As a result, a set of genes containing two clusters of CERs
can thus represent two different sample sub-groups.

3. The above criteria identify subsets of genes each of
which group together a subset of samples in a single CER,
irrespectively of co-expression constraints. If CERs were
thought as independent features, the proposed method
would resemble bi-clustering approaches except for the
co-expression requirement which is not a prerequisite
here.
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