
R
esearch

article
A Critical Assessment of Storytelling: Gene Ontology Categories
and the Importance of Validating Genomic Scans
Pavlos Pavlidis,*,1 Jeffrey D. Jensen,2 Wolfgang Stephan,3 and Alexandros Stamatakis1

1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies (HITS gGmbH), Heidelberg, Germany
2Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
3Section of Evolutionary Biology, Biocenter, University of Munich, Planegg-Martinsried, Germany

*Corresponding author: E-mail: pavlidisp@gmail.com.

Associate editor: Arndt von Haeseler

Abstract

In the age of whole-genome population genetics, so-called genomic scan studies often conclude with a long list of putatively
selected loci. These lists are then further scrutinized to annotate these regions by gene function, corresponding biological
processes, expression levels, or gene networks. Such annotations are often used to assess and/or verify the validity of the
genome scan and the statistical methods that have been used to perform the analyses. Furthermore, these results are frequently
considered to validate “true-positives” if the identified regions make biological sense a posteriori. Here, we show that this
approach can be potentially misleading. By simulating neutral evolutionary histories, we demonstrate that it is possible not only
to obtain an extremely high false-positive rate but also to make biological sense out of the false-positives and construct a sensible
biological narrative. Results are compared with a recent polymorphism data set from Drosophila melanogaster.

Key words: genome scanning, positive selection, gene ontology, validation, literature mining.

Introduction
An important problem in evolutionary biology is the identi-
fication of genes that have undergone recent positive selec-
tion. For the Drosophila melanogaster lineage for instance, the
search for positively selected genes has generated a rapidly
growing list of candidates. A multitude of studies have exam-
ined cosmopolitan and ancestral African populations of
D. melanogaster, with a particular focus on genes that are
important for local adaptation (e.g., Jensen et al. 2007;
Tauber et al. 2007; Svetec et al. 2011). For example,
Beisswanger et al. (2006) found a selective sweep in an an-
cestral African population at ph-p that may have led to the
divergence of the polyhomeotic genes ph-p and ph-d
(Beisswanger and Stephan 2008). Jensen et al. (2007) detected
a selective sweep in the proximity of the diminutive gene for
populations from China and Zimbabwe, consistent with the
role of diminutive as a body size regulator and the observed
clinal pattern variation of the body size trait. Tauber et al.
(2007) reported that a mutation in the circadian clock gene
timeless has spread in the European populations of D. mela-
nogaster, favored by natural selection. The timeless gene af-
fects diapause in response to light and temperature changes.
Analyzing X-linked quantitative trait loci (QTL) affecting cold
tolerance, Svetec et al. (2011) found evidence for a selective
sweep in the gene CG16700 for a European population of
D. melanogaster. The expression variation at the CG16700
has been associated with cold tolerance in an American pop-
ulation of D. melanogaster (Ayroles et al. 2009).

In general, after conducting a genomic scan for positive
selection, researchers focus on the functions and biological

properties of the identified gene regions. The primary goal of
such studies is to corroborate/verify the biological importance
of the genes that have been identified as being positively
selected. One secondary goal of such studies is to increase
the credibility of the positive selection model. In other words,
if a well described, reasonable scenario/narrative can be con-
structed from the identified genes, the credibility of the pos-
itive selection hypothesis is assumed to increase. Often, the
computational and statistical approaches that were deployed
for detecting positive selection are considered to be valid
and/or correctly implemented because results are biologically
sensible. Reasonable findings (such as diminutive or timeless)
are treated as true-positive cases and, albeit indirectly, are
perceived to yield some validity to the methods that were
used to detect them.

Here, we argue that the approach of perceiving an
increased validity of results, simply because they make
sense, may be misleading in many cases. Our main argument
is that the majority of the genes in a genome have important
biological functions with respect to the development,
physiology, or evolution of any organism under study. Even
for genes with obscure roles, it may not represent a grand
challenge to unravel some connections with key genes using
literature mining tools such as iHOP (information
Hyperlinked Over Proteins, Hoffmann and Valencia 2004,
2005) or pathway knowledge bases such as Reactome
(Vastrik et al. 2007).

To this end, we assess whether scanning a genome for
positive selection can result in the detection of “meaningful”
genes, even if we know a priori that the genome is neutral.
Therefore, we initially simulate a sample of neutral genomes,
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subsequently conduct a statistical scan that is followed by a
computational annotation for function.

We do not intend to criticize computational and statistical
approaches for detecting positive selection (e.g., see recent
reviews of Nielsen 2005; Sella et al. 2009; Pool et al. 2010;
Stephan 2010a, 2010b) nor to put into question the need
for a thorough analysis and quest to understand and interpret
the results. Our intention is to critically assess a certain ten-
dency for attaching functional and/or evolutionary impor-
tance to findings obtained from genomic scans to verify the
validity of the results. In other words, we are trying to post a
note of caution with respect to the strong (over-) interpreta-
tion of results given the plethora of potential sources for
analytical errors.

Materials and Methods
Our analysis consists of four steps:

1) We simulate samples drawn from a population evolving
according to a neutral Wright-Fisher model. The demo-
graphic parameters of the population were inferred by
analyzing a set of D. melanogaster X chromosomes sam-
pled in the Netherlands (Li and Stephan 2006).

2) We map the gene annotation of the D. melanogaster
X chromosome to the simulated data.

3) We conduct whole-genome scan for positive selection.
4) We carry out an enrichment analysis of the candidate

targets that are under selection.

The complete procedure is outlined in figure 1.

Simulations

We simulated 100 data sets of 40 X chromosomes each, under
a neutral demographic scenario, which can be described by a
recent and deep bottleneck as well as an ancestral expansion.
This demographic scenario has been inferred by analyzing the

X chromosome of a European population of D. melanogaster
sampled in the Netherlands (Li and Stephan 2006). In partic-
ular, the coalescent-based software MaCS (Markovian
Coalescent Simulator) (Chen et al. 2009) was used to gener-
ate samples drawn from a population, which evolves under
the neutral Wright-Fisher model. MaCS approximates gene-
alogies on a recombining chromosome via a sequential
Markov process. The tool models distant recombination
events as being independent but preserves dependencies
for recombination events that are located more closely to
each other. Therefore, MaCS is more accurate than the se-
quential Markovian approximations of the coalescent (SMC;
McVean and Cardin 2005), where a genealogy only depends
on the preceding genealogy. Furthermore, MaCS execution
times scale linearly with the size of the simulated region and
thereby the tool allows for simulating the entire X chromo-
some of D. melanogaster (>20 Mb). We used the recombina-
tion rates along the X chromosome as inferred by
Fiston-Lavier et al. (2010) for the simulations. Because
recombination rates decrease toward either end of the chro-
mosome, we analyzed the genomic region of the X chromo-
some between 3 and 18 Mb. Very small recombination rates
might introduce biases into MaCS simulations because MaCS
neglects dependencies between coalescent trees of distant
genomic regions. Recombination rates are greater than
2.5� 10�8 per base pair for the part of the X chromosome
under study. The mutation rate for generating the simulated
data sets has been set to the average mutation rate along the
X chromosome (�= 1.45� 10�9) as estimated using the av-
erage divergence from D. simulans in Li and Stephan (2006).

Whole-Genome Scanning

We applied the widely used (e.g., Nielsen et al. 2005; Svetec
et al. 2009; Pavlidis et al. 2010; Li et al. 2011) SweepFinder
program (Nielsen et al. 2005) to detect genomic regions in
which the site frequency spectrum (SFS) deviates from the
neutral expectation (i.e., the average SFS over the entire
genome) and resembles the SFS of a simple selective sweep
model (see eq. 6 in Nielsen et al. 2005). SweepFinder is based
on the composite likelihood ratio (CLR) test developed by
Kim and Stephan (2002). It is, however, more robust to de-
mographic assumptions because of using the average SFS over
the entire genome as the expected neutral SFS. SweepFinder
values represent a CLR between the maximum likelihood of a
selective sweep model and a neutral model (represented by
the average SFS of the genome). Thus, large values of
SweepFinder (statistically significantly larger than neutrality)
suggest a selective sweep. The CLR test of SweepFinder was
applied to 10,000 equidistant points along the genome.

Identification of Putative Selection Regions

For each of the 100 simulated data sets, a cutoff value was
calculated to identify regions that may exhibit positive selec-
tion. For each data set, the cutoff value was selected as the
99.5th percentile from the empirical distribution of the 10,000
equidistant points along the genome for which the CLR sta-
tistic of SweepFinder was calculated. We then mapped the

FIG. 1. Flowchart of the process for the identification and description of
genes that exhibit pseudo-positive selection. The outlined process is
repeated for each of the 100 simulated data sets.
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positions of those points exceeding the cutoff value (outliers)
to gene names on the X chromosome using Flybase (version
5.35, March 2011). We only executed the mapping if the point
was located within the gene or 2 kb upstream or downstream
from the gene. We chose a setting of 2 kb because regulatory
regions for gene expression are located in the proximity of
genes. It has been reported that positive selection acts on
regulatory regions (e.g., Torgenson et al. 2009; Cruickshank
and Nista 2011). Furthermore, in genome scans for positive
selection, genes that are located several kilobases away from
the inferred target of selection are also reported as candidates
(see e.g., Oleksyk et al. 2010 for a recent review). These genes
represent the candidate loci for positive selection. If a single
point was mapped to multiple (overlapping) genes then all
genes were used in the analysis. Furthermore, if two or more
points were mapped to the same gene, only the first point
was used in the analysis. Points that could not be mapped to a
gene using this procedure were excluded from the down-
stream analyses. We outline this process in figure 1. Figure 2
provides an example of this mapping process in the genomic
region between 5 and 6 Mb for one of the simulated data sets.
We study the properties of outlier points that were excluded
from the analysis in supplementary section I, Supplementary
Material online.

Enrichment Analysis of Candidate Gene Lists

The goal of the enrichment analysis of gene lists is to detect a
set of concepts or terms that are enriched in the gene list
relative to a reference (or background) gene list. We used the
g:GOSt (Gene Ontology Statistics) module of g:Profiler

(Reimand et al. 2007, 2011). g:GOSt performs statistical
enrichment analysis to detect Gene Ontology terms, biolog-
ical pathways, regulatory motifs, microRNAs, protein–protein
interactions, or human disease annotations that are associ-
ated with the gene list at hand. Our main goal is to deploy the
above machinery to search for biological annotations that are
enriched in each candidate gene list.

Scanning a Real Data Set

In addition to the simulated data sets, we also scanned a
real biological data set with SweepFinder. The data set com-
prises 37 inbred lines of D. melanogaster sampled in North
Carolina and is publicly available (Drosophila Population
Genetics Project [DPGP, http://www.dpgp.org]). This popula-
tion of D. melanogaster might have experienced more
complex demographic changes than the simulated data
sets. For example, it has been reported that American popu-
lations of D. melanogaster are admixed with African alleles
(Caracristi and Schlötterer 2003). It is widely accepted, how-
ever, that the demography of non-African populations of D.
melanogaster is characterized by deep and very recent bot-
tlenecks, similar to our simulated demographic model (e.g.,
model BN3 in Haddrill et al. 2005; Yukilevich et al. 2010). On
this real data set, SweepFinder was executed using the same
settings as for the simulated data. The enrichment analysis on
the real data set was also conducted in exactly the same way
as for the simulated data. We included a real data set to
conduct a quantitative comparison of simulated and real
data results such as to ensure that our results are quantita-
tively analogous and comparable with those observed in real
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FIG. 2. Mapping of points exceeding the threshold value to genes in Flybase (version 5.35, March 2011). Vertical lines connect points to genes located at
the corresponding positions. Points above the threshold line are shown as filled circles, whereas points below are shown as empty circles. Points above
the threshold line that could not be mapped to a gene were discarded. Multiple hits to a certain gene were excluded from the analysis. The horizontal
line depicts the 99.5% cutoff value defined from the empirical distribution of the SweepFinder scores along the genome. For illustrative purposes only
the region between 5 and 6 Mb is shown. The genes that can be mapped to the points define the set of candidate genes for positive selection.
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data. To verify this analogy, we compared the distributions of
SweepFinder output values between simulated and real data
sets, the distribution of SweepFinder outliers, as well as the
number of overrepresented biological annotations as identi-
fied by the enrichment analysis.

Results
Initially, we summarize the results obtained on the 100 sim-
ulated data sets. For discussing specific issues, we always refer
to the first simulated data set. Because the (arbitrary) order of
the simulated replicates is independent of their content, we
chose to provide specific examples from the first simulated
data set for convenience, provided that it contained at least
one significant biological term or property. The first simulated
data set is not an outlier among the simulated data sets with
respect to the number of significant biological categories or
SweepFinder results (see Enrichment Analysis of Genes that
Exhibit the Signature of Positive Selection in Simulations
for a summary across all simulated data sets). The first sim-
ulated data set, as well as software/scripts that reproduces the
analysis can be downloaded at http://exelixis-lab.org/pavlos/
gopopgen.tar.gz.

Mapping Positive Selection and Performing
Enrichment Analysis
Mapping Positive Selection in Simulated Data Sets
As described earlier, we generated a list of genes encompassed
within significant regions for each data set. On average,
43 outlier genes (minimum 27 and maximum 60) were de-
tected (see also supplementary section II, Supplementary
Material online). Here, polymorphic patterns that exhibit
the signature of a selective event are associated with a shift
of the SFS toward low- and high-frequency–derived alleles. An
example for such a polymorphic pattern is provided in figure 3
for the genomic region with the highest SweepFinder score in
the first simulated data set. This polymorphic pattern resem-
bles the expectation of a recent selective event, which is
characterized by the lack of intermediate-frequency alleles.
Along a recombining genome, such patterns occur due to
the stochastic alternation of shallow and deep coalescent
trees. Qualitatively, polymorphic patterns that are character-
ized by the lack of intermediate-frequency alleles and
generated by the stochastic alternation of shallow and deep
coalescents are very similar to patterns that have been
generated by a “genuine” selective sweep. Therefore, it may
be impossible or will be very difficult to distinguish them
from true-positive selection events. Thus, results do not
only reflect the sensitivity of the neutrality tests to
demographic assumptions, but, more importantly, the resem-
blance of the polymorphic patterns created by some neutral
and non-neutral evolutionary scenarios, as has been well
described in previous studies (e.g., Barton 1998; Galtier
et al. 2000; Przeworski 2002; Depaulis et al. 2003; Jensen
et al. 2005; Nielsen et al. 2005; Li and Stephan 2006;
Pavlidis et al. 2010).

Enrichment Analysis of Genes that Exhibit a Signature of

Positive Selection in Simulations
As already mentioned, enrichment analyses for gene ontology
(GO) categories, pathways, transcription factor binding sites,
microRNAs, diseases, and protein–protein interactions were
performed using g:GOSt. g:GOSt uses a custom algorithm
g:SCS (Set Counts and Sizes) for performing multiple testing
correction over GO categories, pathways, and other types of
functional data. For a given input gene query of fixed length,
the correction analytically approximates the empirical 95%
quantile of P values obtained from randomly generated gene
lists of the same fixed length, separately and independently
for each data source (e.g., GO, KEGG, Reactome). According
to simulations by Reimand et al. (2007), SCS correction pro-
duces values that are comparable with two standard multiple
testing procedures: being more conservative than the
Benjamini-Hochberg false discovery rate (Benjamini and
Hochberg 1995) and less conservative than the Bonferroni
correction. To further test the SCS correction approach, we
performed enrichment analysis for random subsets of 50 X
chromosome genes. Among these, 34% yield at least one sig-
nificant category and 9% yield at least two significant catego-
ries (see also supplementary section III, Supplementary
Material online). g:GOSt returns scaled P values such as the
highest significant P value after multiple testing correction
assumes a value of 5% and smaller P values are scaled pro-
portionally. The background data set used in the enrichment
analysis entailed only genes located on the X chromosome, as
downloaded from the Ensembl genome browser (Flicek et al.
2011).

In the first simulated data set, we find an enrichment for
eight GO categories (six refer to biological process and two to
cellular component) and three related to the Human
Phenotype Ontology (HPO). This means that homologues

FIG. 3. Patterns of the SFS classes that occur around the highest
SweepFinder peak in the first simulated data set. The graph denotes
the class of the polymorphisms (y-axis) at different positions (x-axis). For
example, a point at position 10,670,000 with allelic class 3 denotes that
at this position there exists a tripleton in the data set. One of the
characteristic signatures of a recent selective event, which is the lack
of intermediate-frequency–derived polymorphisms, is illustrated here as
a blank region that occurs in the center of the graph.
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in humans were enriched in the respective HPO categories.
Furthermore, we detected 1 miRNA, 2 Reactome and 1 tran-
scription factor binding site categories. For instance, the
P value of the GO category “cellular nitrogen compound
biosynthetic process” is 4.16� 10�3, and for the “cell adhe-
sion” category the P value is 2.99� 10�4. On average, 5.19
statistically significant categories were detected per simulated
data set (a total of 519 significant categories in 100 simulated
data sets).

Out of 100 simulated data sets, 77 yielded at least one and
64 at least two significant categories: 13, 11, and 10 data sets
contained one, two, and three statistical significant categories,
respectively and 16 data sets gave rise to more than 10 sig-
nificant categories. The maximum number of significant cat-
egories detected in a single simulated data set was 25 (45
genes were outliers). Categories in enrichment analysis are
not independent of each other since a set of genes may
form part of several categories and genes can also form hier-
archies. Thus, detecting 25 categories using 45 genes does not
represent an unexpected result. A description of significant
functional categories as inferred for simulated data sets is
provided in supplementary section IV, Supplementary
Material online.

Enrichment Analysis of the Genes that Exhibit a Signature of
Positive Selection in the DPGP Data Set
We performed enrichment analysis of the DPGP data set
in analogy to the simulated data sets. The command line
parameters and program invocations used to detect the
candidate genomic regions for positive selection and the
enrichment analysis were exactly identical for the DPGP
data set and the simulated data sets. Here, the goal consists
in comparing the number of statistically significant biological
terms detected in a real and 100 neutrally evolving simulated
data sets. Therefore, our comparison is not qualitative
but quantitative. Furthermore, we do not intend to argue
that the DPGP data set has necessarily evolved neutrally,
but rather, that it may be extremely difficult to accurately
determine whether a data set has evolved under positive
selection or under neutrality by mining biological meta-
information.

Using g:GOSt again, nine statistically significant biological
terms were obtained for the real data set related to transcrip-
tion factor binding sites. P values ranged from 4.82� 10�2 to
3.26� 10�4. Thus, the number of biological terms obtained
using g:GOSt is not higher in the real data set than in the
simulated data sets (remember that on average 5.19 terms are
detected per data set and 16 of 100 simulated data sets con-
tained at least 10 biological terms).

Believing the Results from Simulations—Is It Possible
to Construct Plausible Evolutionary Explanations from
Pseudo-Selection Results?

Here, we intentionally treat the first simulated neutral data
set as real biological data sampled from a European popula-
tion of D. melanogaster. Consequently, the SweepFinder re-
sults comprise a candidate list of genes for positive selection,
and we try to explicitly construct a narrative for the results.

We examine whether it is possible to mine the literature to
provide further evidence in support of the adaptive role of the
artificial candidate genes during the colonization of Europe by
D. melanogaster. To this end, we chose the three genes with
the highest SweepFinder values from the first simulated data
set and interpret them as true-positive results.

Narrative for Gene CG15211
The first gene is referred in Flybase by the symbol
Dmel\CG15211. Despite the limited amount of information
for CG15211, there exist indications that it is involved in im-
portant biological processes. The GO indicates that its mo-
lecular function and the biological process it is involved in are
unknown. In addition, no phenotypic data are available.
However, there exist four annotated transcripts and four
annotated polypeptides, and it also contains a MARVEL-like
domain (see Flybase, http://flybase.org/reports/FBgn0030234
.html for further information). All described proteins contain-
ing the MARVEL domain are consistent with the M-shaped
topology; that is, they contain four transmembrane helix re-
gions. Their function could be related to cholesterol-rich
membrane apposition events (see also http://www.ebi.ac
.uk/interpro/IEntry?ac=IPR021128).

Using a statistically rigorous analysis for identifying genes
whose expression was altered during starvation stress
treatment, Harbison (2004) showed that CG15211 is
down-regulated in starvation-stress experiments. Further-
more, Wijnen et al. (2006) demonstrated that CG15211 tran-
script levels are light-regulated. Thus, CG15211 may have
played an important role during the initial stages of European
colonization following the migration of the founding popu-
lation from Africa. Because of daylight and habitat differences
between African and European environments, the first pop-
ulations that colonized Europe may have experienced a high
selective pressure on the CG15211 gene.

Narrative for Gene CG8188
The second identified gene is the Dmel/CG8188. It is a protein
coding gene and it is predicted (based on sequence similarity)
to exhibit ubiquitin–protein ligase activity. According to the
GO annotation, the biological processes in which it is involved
are unknown. Eleven alleles have been reported and no phe-
notypic data are available. CG8188 appears to affect the wing
formation particularly in males. P-element insertions in
CG8188 caused general and localized deformations of the
wings of males and only general deformations of the wings
of females (Carreira et al. 2011). Its human homologue,
UBE2S/E2-EPF, drives elongation of ubiquitin chains by the
anaphase-promoting complex (Wu et al. 2010). E2-EPF has
been reported to be highly expressed in common human
cancers (Ohh 2006). According to BioGRID (Stark et al.
2011), CG8188 interacts with seven proteins encoded by
CG5053, TRAF6, AOP, DM (diminutive), LOCO, ORG-1, and
TIM (timeless). Interactions have been demonstrated experi-
mentally, either with two-hybrid systems or with affinity
capture-western blots. CG5053 is important for the com-
pound eye development (inferred from a mutant phenotype,
Flybase; Langton et al. 2009). AOP participates in many im-
portant functions from the compound eye development
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(Flybase; Li and Carthew 2005) to gonad, muscle, and neuron
development as well as apoptosis. TRAF6 is associated with
defense response to Gram-negative bacteria and innate
immune response (Flybase; Leulier et al. 2006). It has been
reported that TIM (Tauber et al. 2007) and DM (Jensen
et al. 2007) have experienced recent selective sweeps in
non-African populations. For the CG8188 gene, we were not
able to find direct support for a selective sweep. However, we
demonstrated that CG8188 can interact with important de-
velopmental genes (CG5053 and AOP) or with genes for
which there exists evidence for selective sweeps (DM and
TIM). Thus, CG8188 may have played a significant role
during the adaptation of the European D. melanogaster pop-
ulation via its interaction with functionally important genes.

Narrative for Gene CG6788
The third gene is the Dmel/CG6788. Its molecular function is
predicted to be receptor binding based on InterPro domains
and it is suggested (based on sequence similarity) to be in-
volved in cell adhesion and it also contains a fibrinogen
domain. Further details can be found at Flybase (http://fly
base.org/reports/FBgn0030880.html). Arbeitman et al. (2004)
showed that the CG6788 gene is expressed only during the
0–24 h stage of adult male life in the male ejaculatory bulb.
According to Arbeitman et al. (2004) the timing of CG6788
expression points toward a role in ejaculatory bulb develop-
ment. Furthermore, differential expression analyses revealed
that CG6788 participates in immune response. In a microarray
analysis, Chamilos et al. (2008) showed that CG6788 is one of
98 genes whose induction was upregulated after infection
with Rhizopus compared with the control aseptic injury or
those injected with A. fumigatus. There also exists evidence
that CG6788 is activated by Toll. Members of the Toll receptor
family play an important role in activating immunity genes
because the Toll pathway controls the induction of antimi-
crobial peptide genes. CG6788 was found to be highly acti-
vated (�44 times) in the constitutively active Toll mutant
larvae (Bettencourt et al. 2004). Phenotypic plasticity may be
related with the expression levels of CG6788. Sambandan
et al. (2008) showed that CG6788 variation in expression
due to the larval growth medium depends on the genotype.
Thus, CG6788 appears to be an important gene for immune
response. Its expression level is regulated by Toll, and appears
to have significant effects on the genotype by environment
interactions; its expression levels change due to the larval
growth medium, but the degree of change also depends on
the environment. Positive selection may have acted on the
gene or its cis-regulatory sequences after the colonization of
Europe to contribute to the adaptation of the newly founded
population in the European environment.

Impact of Demography

We show that meaningful narratives can be constructed from
neutral simulations by using an inferred demographic model
for D. melanogaster sampled in the Netherlands (Li and
Stephan 2006). This demographic scenario is characterized
by a deep and recent bottleneck scenario. It has been
shown (Pavlidis et al. 2010) that severe bottlenecks

considerably increase the proportion of false-positives in neu-
trality tests. Even if demography affects our analysis, the re-
sults are not limited to the specific demographic model
because 1) milder bottlenecks (e.g., Thornton and
Andolfatto 2006) can also generate a relatively high propor-
tion of false-positives (e.g., true-positives: 0.40–0.67; false-pos-
itives: 0.22–0.35; table 4, Pavlidis et al. 2010), and 2) many
natural populations have experienced recent founder
events, where the number of founders ranges from a few to
a few hundred individuals (Pascual et al. 2007). Therefore,
severe bottlenecks (as used here) represent a realistic scenario
for natural populations. Finally, genome scans for positive
selection detect candidates as outliers in the distribution of
a test statistic (e.g., Kelley et al. 2006; Gu et al. 2009; Rubin
et al. 2010). The actual demography of the natural population
affects the proportion of true-positives at the tail of the dis-
tribution because false-positives form a part of the tail. Using
simulations, we demonstrate that even if true-positives are
completely absent from the tail of the distribution of a test
statistic, it is still possible to come up with convincing
narratives.

We simulated 80 X chromosome data sets using a milder
bottleneck model (Thornton and Andolfatto 2006) as
opposed to Li and Stephan (2006) to further generalize the
results. The average minimum, median, and maximum
SweepFinder values and the 95% confidence intervals for
the milder model are 0 (0–0), 0.12 (0.09, 0.15), 42.3 (33.07,
53.74), respectively. The corresponding average minimum,
median, and maximum values for the Li and Stephan
(2006) model and the 95% confidence intervals are 0 (0–0),
0.21 (0.18–0.23), and 56.4 (42.8–81.9). Simulations involving
even milder bottlenecks than those used above (that have
approximately the same severity) further reduce the CLR
values of SweepFinder (PP, unpublished results). Applying
g:GOSt to the simulated data with the Thornton and
Andolfatto (2006) milder bottleneck model using exactly
identical parameters as for the deep bottleneck model, still
yields significant categories in 85% of the data sets. The max-
imum number of significant terms for a single data set was 74
(16 of them refer to GO terms and the remaining 58 to
transcription factor binding sites).

Testing the Uniformity of Outliers in a Whole-
Genome Scan for Selective Sweeps

One may argue that instead of performing whole-genome
neutral simulations to test the discovery of statistically signif-
icant functional categories, we could uniformly place 50
(=0.005� 10,000) points on the genome and assume that
they are outliers of a hypothetical selective sweep scan.
Such an approach is biased because SweepFinder outliers
are not uniformly distributed. Depending on the recombina-
tion rate and the demographic model, clusters of outliers
instead of uniformly distributed points are generated.
Clustering of outliers might be pronounced for some demo-
graphic histories (such as bottlenecks) and variable recombi-
nation rate along the chromosome (as we have assumed in
this study).
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Furthermore, bottlenecks may result in very different
coalescent trees along a recombining chromosome.
Consequently, regions with low variation, a shifted site fre-
quency spectra or high linkage disequilibria may be generated
locally on the chromosome, and thus producing patterns
of pseudo-selective sweeps. The discovery of statistically
significant GO categories (see also Discussion) can thus be
attributed to this local generation of spurious selective sweep
patterns. Recombination also plays an important role in the
generation of pseudo-selective sweep patterns because coa-
lescent histories may be different across a recombination
breakpoint. Too large recombination rates will eventually
result in a different genealogy every few (or even a single)
base pairs, thereby blurring any selective sweep pattern.
Absence of recombination, on the other hand, will result in
exactly the same underlying coalescent tree for the whole
chromosome. Thus, regions that resemble a selective sweep
cannot be produced. There is, however, a range of recombi-
nation rates that can produce spurious selective sweep pat-
terns depending on the demographic scenario.

To test the hypothesis that recombination rate and demo-
graphic history are responsible for the clustering of outliers,
we examine the uniformity of outliers under the following
assumptions: 1) Li and Stephan’s (2006) bottleneck model
and recombination rates inferred by Fiston-Lavier et al.
(2010), 2) Li and Stephan’s (2006) bottleneck model using a
10 times lower recombination rate than the inferred by
Fiston-Lavier et al. (2010), 3) same as used in 1) but recom-
bination rate is 10 times higher, 4) standard neutral model
with the same recombination rate as in 1), and 5) standard
neutral model with 10 times lower recombination rate than
in 1). For each of the five scenarios, we carried out 100 sim-
ulations. Uniformity of outliers was tested using the
Kolmogorov-Smirnov test (KS) as implemented in R at a sig-
nificance threshold of 0.05. More specifically, we assess the
number of data sets that deviate from uniformity (KS P
value< 0.05) in each of the five scenarios and compare it
with the expected number of deviations under a uniform
distribution. For scenario 1 the P value of 62 (5 are expected
by chance) replicates is smaller than 0.05. For simulation 2, 99
data sets have a P value of< 0.05. On the other hand, the
P value is smaller than 0.05 in only 9 data sets under scenario
3. For the standard neutral simulations, under scenario 4, we
observe that 12 data sets show a P value of less than 0.05; and
under scenario 5, 43 data sets have a P value of <0.05. Thus,
uniformity increases under a standard neutral model (as op-
posed to a bottleneck model) and higher recombination
rates, and consequently the joint action of demography
and recombination, affects the clustering of outliers. The
P value distributions under all five simulation scenarios are
described in supplementary section V, Supplementary
Material online.

The results of the enrichment analysis are not substantially
affected by the recombination rate. For the scenario 2, where
recombination is 10 times lower, 69 data sets and 43 data sets
have at least one and two significant categories, respectively.
When recombination is 10 times higher (scenario 3), 81 data

sets show at least one significant category and 70 data sets at
least two significant categories.

Using the o Statistic and the Combination of the o
Statistic and SweepFinder to Detect Selective Sweeps

The o statistic (Kim and Nielsen 2004; Jensen et al. 2007;
Pavlidis et al. 2010) uses linkage disequilibrium (LD) patterns
to detect recent positive selection. As the o statistic and
SweepFinder detect different signatures of selective sweeps
(LD vs. SFS), the two approaches can be used in a comple-
mentary way. Furthermore, combining the o statistic and
SweepFinder using a machine learning technique increases
the power to detect selection (Pavlidis et al. 2010). Here, we
used a more recent highly optimized code for computing the
o statistic, OmegaPlus (http://www.exelixis-lab.org/software.
html). We tested two analysis options: 1) applying the o
statistic assuming the 99.5th percentile as threshold (similarly
to the SweepFinder analysis), and 2) combining results from
SweepFinder and the o statistic assuming 50 points to be
outliers (0.5%) that are entailed in the top-right rectangle of
the scatter-plot between SweepFinder and the o statistic
(supplementary section VI, Supplementary Material online).

The distribution of outliers along the X chromosome is
different between the o statistic and SweepFinder. o
Statistic outliers are distributed more uniformly than
SweepFinder outliers: only in three data sets does the
KS-test yield P values of less than 5% (vs. 62 data sets in
SweepFinder). For the combination analysis using the o sta-
tistic with SweepFinder, 21 data sets deviate from uniformity.
The difference of the outlier distributions as obtained by the
o statistic and SweepFinder can be attributed to the distri-
bution of coalescent trees along the genome (supplementary
section VII, Supplementary Material online). Enrichment anal-
ysis based on the o statistic yields 83 data sets with at least
one significant category and 62 data sets with at least two
significant categories. Results from the joint analysis of the o
statistic and SweepFinder are similar: 79 and 62 data sets yield
at least one and two significant categories, respectively.

Analysis with the o statistic suggests that even if the
distribution of outliers would be uniform the enrichment
analysis is still biased. Apparently, this is because longer
genes are favored to be in the list of candidate genes when
outliers are distributed uniformly. Consequently, gene length
will affect the enrichment analyses if there exist categories
with a preponderance for either short or long genes. This
bias has been recently addressed in RNA-seq studies
(Young et al. 2010). Thus, even when analyses are performed
with tools that alleviate the problem of outlier uniformity
(e.g., theo statistic), current implementations for enrichment
analyses are inappropriate for whole-genome scans of positive
selection.

Discussion

Why Do We Believe Results if They Make Sense?

Consider an abstract genome scan study that yields a list of
candidate genes for positive selection, and let A be the asso-
ciations of these genes to biological meta-information such as
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functions, processes they are involved in, and expression reg-
ulation. Let M represent a model of positive selection with
probability P(M). The likelihood of M given the association
data A is P(AjM). Then, intuitively, we believe that P(AjM)
should be larger than P(A); that is, the probability to find
meaningful biological descriptions of the data should be
larger under the model of positive selection than the total
probability of A P(A). Thus, according to Bayes’ rule
P(MjA) = P(M)� P(AjM)/P(A), our posterior probability
P(MjA) for the model M is increased when biological infor-
mation about the findings can be obtained. In contrast to this,
we argue by means of a simple simulation study that P(A)
does actually not need to be smaller than P(AjM).

Consider the following simple example that elucidates the
above argument: assume that we are scanning a genome from
a European D. melanogaster sample for positive selection. It
will be reasonable and intuitive to expect that the presence of
selection may affect genes that are responsible for cold-
tolerance, starvation, pigmentation, light-cycle regulation,
and resistance to insecticides. In general, we are biased
toward searching for, or expecting to observe gene functions
that are associated with the environmental differences be-
tween Europe (derived population) and Africa (ancestral pop-
ulation). In this example, M represents a model of positive
selection, and A represents the associations with biological
information that we believe to make sense. Therefore,
P(AjM), that is, the likelihood of selection, is expected to be
high when A makes sense. Thus, if we can provide evidence
that the candidate genes are indeed associated with
environment-specific functions (or generally with reasonable
functions in the context of the study), we automatically in-
crease the likelihood of selection. The underlying problem is
that we cannot estimate the total probability of A under
selection or neutrality, P(A). Here, we show that we can
also effectively mine the literature to obtain biologically in-
teresting annotations under the null (neutral) model. Thus,
P(A) does actually not need to be smaller than P(AjM).

Do Neutrality Tests Detect Genomic Regions that
Have Experienced Positive Selection?

Genomic scans for positive selection will detect regions with
unusual polymorphic patterns, generated by unusual geneal-
ogies. If an empirical genome-wide distribution of a summary
statistic is used to define a significance threshold, then these
genomic regions are located at the respective tails of the
distribution. A disadvantage of using empirical distributions
for detecting regions that have experienced positive selection
is that the proportion of the genome that has experienced
positive selection is unknown, and therefore the number of
detected genetic regions is likely to be over- or underesti-
mated. Moreover, it is unknown whether true-positives will
preferentially populate the tail of the distribution, particularly
in nonequilibrium populations (Thornton and Jensen 2007;
Pavlidis et al. 2010). On the other hand, if a parametric boot-
strap method is used to define a cutoff value for a neutrality
test, we may fail to precisely detect those regions that have
experienced positive selection because of a plethora of

simplifying assumptions that are inherent to the model.
Thus, neither model-based nor empirical-distribution
approaches can accurately identify genomic regions that are
under positive selection mainly because they represent an
incorrect null hypothesis (Thornton and Jensen 2007).
Furthermore, both approaches will typically yield a list of
candidate loci for positive selection. The proportion of
true-positives in such a list is unknown, and GO categoriza-
tion is often used to identify likely candidates.

Should We Believe Genome Scan Results Because
They Make Sense?

A null hypothesis for what “makes sense” does not exist.
Therefore, the validity of the results is independent of GO
descriptions. Furthermore, we are unaware of the selective
pressures that the organisms have experienced in the past
and therefore can not expect a certain category of genes to be
under positive selection. Even if we expect and accept some
plausible scenarios such as cold tolerance of D. melanogaster
in cold climates, the selective pressures that this specific en-
vironmental condition induces on the organisms under study
and the various ways in which an organism may respond to
this pressure are unknown. Finally, due to the pleiotropy of
many genes and their complex relationships, we may only
have limited knowledge on how a certain response actually
manifested itself in nature.

Evidently, we can retrieve biological functions that are po-
tentially related to adaptation for a significant number of
genes. This is especially true when there is no a priori hypoth-
esis to test for, or when the hypothesis at hand is very general.
For example, the attempt to explain adaptation of D. mela-
nogaster in Europe can involve a very large number of genes
ranging from cold-tolerance, metabolism, immunity, learning
to almost any other process or function that we consider as
being important. However, it may be possible that adaptation
affects only a very limited number of genes.

More importantly, the majority of genes can be put into
context and construct a narrative that “makes sense,” for
instance when genes are linked to functionally important
genes. Additionally, our imagination, ability, and desire to
detect patterns, as well as the wealth of information available
in the literature may lead us to come up with an explanation
for the action of positive selection on an arbitrary gene in the
genome.

It is worth noting that the overlap between lists of candi-
date genes for positive selection from various studies in the
human populations is limited (e.g., Nielsen et al. 2005;
Bustamante et al. 2005; Voight et al. 2006; Williamson et al.
2007; see also Oleksyk et al. 2010 for a recent review). In other
words, candidate gene sets are mostly disjoint among studies.
This lack of overlap might reflect the differences between the
applied neutrality tests or that the neutrality tests cannot
accurately detect the target of selection. Yet, GO enrichment
analysis and literature mining for certain genes are extensively
used in such studies not only to explain the findings but also
to interpret the results as being meaningful.
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Comparison between Observation and Simulations

Qualitatively, there are not substantial differences between
the real reference data set we used and the 100 simulated
neutral data sets. In the real data set, SweepFinder detects
stronger selection (supplementary section VIII, Supplemen-
tary Material online). This might be an indication of true-
selective sweeps in the real data set, but it can also suggest
that the recombination rate or mutation rate used in the
simulations was higher than in reality There is no evidence
that SweepFinder CLR values are significantly higher in the
real data set than in the simulated data sets for almost any
quantile value (see also supplementary section VIII,
Supplementary Material online). Of course, this may just
mean that the demographic scenario used here is too con-
servative or that the power of SweepFinder to detect selection
under the specific demographic scenario (Li and Stephan
2006) is too small. Furthermore, there is no evidence that
the real data analysis yields more biological categories. This
points into the direction that by almost randomly sampling
genes across a genome, as was done in our simulations, we
can construct equally good narratives as for the real data set.
This is particularly worrisome because i) a priori we have no
reason to believe that a certain proportion of the genome
should have experienced a recent sweep, and ii) the tail of the
distribution of neutrality tests is not even necessarily enriched
in true-positives particularly in nonequilibrium populations
(Thornton and Jensen 2007; Pavlidis et al. 2010).

Why Can Significant GO Categories Occur in
Simulations?

Over-representation analyses returned many significant
categories in neutral data sets. This is unexpected: random
subsets of X chromosome genes result in significantly less hits
(0.5 per random subset of 50 genes vs. 5.19 per simulation) on
average (Mann Whitney test P value: 5.936� 10�16).
However, specifically for a genome scan analysis, the outcome
may not be truly random. There is increasing evidence that
genes are not distributed randomly across chromosomes. By
analyzing five eukaryotic genomes, Lee and Sonnhammer
(2003) found evidence for clusters of genes that belong to
the same pathway. Al-Shahrour et al. (2010) show that in
well-annotated species, genomes are formed by a large
amount of functional neighborhoods. Approximately 5.3%
of genes belong to functional neighborhoods in D. melanoga-
ster, 3% of the genes belong to functional neighborhoods in A.
thaliana, 7.2% in humans, and 12.8% in R. norvegicus.
Neighboring genomic regions do not evolve independently.
If the recombination rate is not very large, the coalescent
histories of neighboring genomic regions are expected to be
more congruent. Polymorphic patterns and thereby neutral-
ity test scores are based on coalescent histories. Thus, neu-
trality tests might yield high values in large genomic regions
because of dependent evolutionary histories in neighboring
locations. Consequently, outliers will tend to form clusters.
Combining functional clustering with evolutionary histories
at genomic neighborhoods may thus eventually cause
over-representation of some biological categories.

Using theo statistic or combining SweepFinder with theo
statistic, the clustering of outliers is alleviated. However, sev-
eral functional terms are detected as significant in enrichment
analyses. This is because current implementations of enrich-
ment analyses neglect important factors such as the length of
genes.

A further evolutionary hypothesis that could lead to sta-
tistical enrichment of some biological categories is the com-
bination of population bottlenecks with purifying selection. If
purifying selection affects preferentially a specific set of genes
(e.g., a metabolic pathway) and the population undergoes a
bottleneck, then depletion of genomic variation and SFS skew
will become more pronounced for the genes of the pathway.
These genes could thus be detected by neutrality tests as
candidates for positive selection. A subsequent GO enrich-
ment analysis would then report the metabolic pathway
under consideration.

Verifiability and Reproducibility of Results

A rarely addressed problem in genome analyses is verifiability
and reproducibility of results. Often, arbitrary or hard to jus-
tify decisions are taken to determine and set data analysis
parameters. Even small variations of these parameters can
have dramatic effects on the final results. For example,
arbitrary window size and offset values are used in scans for
positive selection with simple summary statistics (e.g.,
Tajima’s [1989] D). Small changes (even by only a few
bases) of window size might change the results from being
statistically significant to being nonsignificant (supplemen-
tary section IX, Supplementary Material online). Often,
these (arbitrary) parameter settings are not reported in the
literature, and consequently reproducing and verifying com-
putational experiments becomes hard or even impossible. For
example, Akey et al. (2002) considered as outliers the top
2.5% of an empirical distribution of FST values, and Kayser
et al. (2003) assumed that candidate loci for positive selection
exhibit unusual high RST and/or ln (RV) values. RST is analo-
gous to FST and measures population differentiation. Large
positive or negative values of ln (RV) might reflect a recent
selective sweep at a nearby locus in a population (Kayser et al.
2003). In our analysis, we have also used some arbitrary set-
tings for several quantities and thresholds that are typically
required to conduct genome scans for positive selection. For
example, we ignored the first 3 Mb of the chromosome be-
cause of small recombination rates and we used the 99.5th
percentile as threshold in SweepFinder. Arbitrary or hard to
justify parameter decisions are mostly inevitable in data
analyses and they should be considered prior to examining
the results. Another problematic phenomenon is the contin-
uous data growth that yields the task of repeating computa-
tions for reproducing results nearly impossible because of
excessive computational requirements (Stamatakis and
Izquierdo-Carrasco 2011). Software bugs, nondeterminism
in parallel codes, and the usage of different code versions
may also produce unverifiable results. The constant changes
in computer architectures, compilers, and scientific libraries
further complicate the reproducibility of experiments. For
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example, in the current analysis, MaCS (v.0.4c) produced dif-
ferent results when using identical random number seeds but
different versions of the boost library (www.boost.org, v1.33
and v1.40) because of code changes in the random number
generator implementation (supplementary section X,
Supplementary Material online). We observed this behavior
by pure chance while assembling a respective archive that will
allow for fully reproducing our results (http://exelixis-lab.org/
pavlos/gopopgen.tar.gz).

Conclusion
Literature mining for constructing narratives requires a con-
siderable amount of time. Such an investment is useful as long
as we are convinced that the results are not an artifact either
of the analysis approach (e.g., the outlier approach may pro-
duce spurious results) or of model misspecification, which
may result in rejecting an unrealistic null hypothesis, or of
other possible sources of errors. Given that neutrality tests
entail a large number of simplifying assumptions, we should
focus more on analyzing method behavior rather than on
interpreting or “plausibilifying” the results. Furthermore,
genome scan-based selection analyses suffer from the absence
of an a priori hypothesis. Thus, the number of potential in-
terpretations of the results is practically unlimited. A
well-designed experimental setup should therefore strive to
reduce the number of hypotheses a priori such as to simplify
the interpretation of the results. For instance, combining QTL
scans with selection mapping could be deployed to narrow
down the plethora of potential hypotheses to those that are
associated with the trait under consideration. However, given
that QTL span large genomic regions we should once again be
cautious with interpretations. Alternatively, a list of candidate
genes could be obtained prior to the analysis based on exper-
imental evidence. In this case, it would be more straightfor-
ward to test if neutrality tests detect genes from the list and
how often the candidate genes appear in the tail of the dis-
tribution from the null hypothesis. Therefore, we suggest that
result-selling narratives in biology should be abandoned in
favor of a more critical re-examination of the results.

Supplementary Material
Supplementary sections I–X are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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We thank Jüri Reimand (University of Toronto) and Tambet
Arak (University of Tartu) for integrating Drosophila annota-
tions to g:GOSt directly from the Gene Ontology project
(www.geneontology.org) and for critical comments on the
manuscript. We also thank two reviewers, Vanessa Bauer
DuMont and Zheng Wang (Cornell University), for their valu-
able suggestions. J.D.J. has been funded by the EPFL, a grant
from the National Science Foundation (DEB-1002785), and a
faculty award from the Worcester Foundation. W.S. has been
supported by a Research Unit grant (STE 325/12) from the
German Research Foundation.

References
Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. 2002. Interrogating a

high-density SNP map for signatures of natural selection. Genome
Res 12:1805–1814.

Al-Shahrour F, Minguez T, Marqués-Bonet T, Gazave E, Navarro A,
Dopazo J. 2010. Selection upon genome architecture: conservation
of functional neighborhoods with changing genes. PLoS Comput Biol
6:e1000953.

Arbeitman MN, Fleming AA, Siegal ML, Null BH, Baker BS. 2004. A
genomic analysis of Drosophila somatic sexual differentiation and
its regulation. Development 131:2007–2021.

Ayroles JF, et al. (11 co-authors). 2009. Systems genetics of complex traits
in Drosophila melanogaster. Nat Genet 41:299–307.

Barton NH. 1998. The effect of hitch-hiking on neutral genealogies.
Genetical Res 72:123–133.

Beisswanger S, Stephan W. 2008. Evidence that strong positive selection
drives neofunctionalization in the tandemly duplicated polyhomeo-
tic genes in Drosophila. Proc Natl Acad Sci U S A 105:5447–5452.

Beisswanger S, Stephan W, De Lorenzo D. 2006. Evidence for a selective
sweep in the wapl region of Drosophila melanogaster. Genetics 172:
265–274.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J R Statist Soc
Ser B (Methodological) 57:289–300.

Bettencourt R, Tanji T, Yagi Y, Ip YT. 2004. Toll and Toll-9 in Drosophila
innate immune response. J Endotoxin Res 10:261–268.

Bustamante CD, Fiedel-Alon S, Williamson S, et al. (14 co-authors). 2005.
Natural selection on protein-coding genes in the human genome.
Nature 437:1153–1157.

Caracristi G, Schlötterer C. 2003. Genetic differentiation between
American and European Drosophila melanogaster populations
could be attributed to admixture of African alleles. Mol Biol Evol
20:792–799.

Carreira VP, Soto IM, Mensch J, Fanara JJ. 2011. Genetic basis of wing
morphogenesis in Drosophila: sexual dimorphism and
non-allometric effects of shape variation. BMC Dev Biol 11:32.

Chamilos G, Lewis RE, Hu J, Zal T, Gilliet M, Halder G, Kontoyiannis D.
2008. Drosophila melanogaster as a model host to dissect the immu-
nopathogenesis of zygomycosis. Proc Natl Acad Sci U S A 105:
9367–9372.

Chen GK, Marjoram P, Wall JD. 2009. Fast and flexible simulation of
DNA sequence data. Genome Res 19:136–142.

Cruickshank T, Nista P. 2011. Selection and constraint on regulatory
elements in Drosophila simulans. J Mol Evol 73:94–100.

Depaulis F, Mousset S, Veuille M. 2003. Power of neutrality tests to
detect bottlenecks and hitchhiking. J Mol Evol 57(Suppl 1),
S190–200.

Fiston-Lavier A-S, Singh ND, Lipatov M, Petrov DA. 2010. Drosophila
melanogaster recombination rate calculator. Gene 463:18–20.

Flicek P, Amode M, Barrell D, et al. (50 co-authors). 2011. Ensembl 2011.
Nucleic Acids Res 39:D800–806.

Galtier N, Depaulis F, Barton NH. 2000. Detecting bottlenecks and se-
lective sweeps from DNA sequence polymorphism. Genetics 155:
981–987.

Gu J, Orr N, Park SD, Katz LM, Sulimova G, MacHugh DE, Hill EW. 2009.
A genome scan for positive selection in thoroughbred horses. PloS
One 4:e5767.

Haddrill PR, Thornton KR, Charlesworth B, Andolfatto P. 2005.
Multilocus patterns of nucleotide variability and the demographic

3246

Pavlidis et al. . doi:10.1093/molbev/mss136 MBE
 at K

arlsruher Institut fÃ
¼

r T
echnologie on O

ctober 30, 2012
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

www.boost.org
http://mbe.oxfordjournals.org/cgi/content/full/mss136/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss136/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss136/DC1
http://exelixis-lab.org/pavlos/gopopgen.tar.gz
http://exelixis-lab.org/pavlos/gopopgen.tar.gz
http://mbe.oxfordjournals.org/cgi/content/full/mss136/DC1
http://www.mbe.oxfordjournals.org/
www.geneontology.org
http://mbe.oxfordjournals.org/


and selection history of Drosophila melanogaster populations.

Genome Res 15:790–799.

Harbison ST. 2004. Quantitative trait loci affecting starvation resistance

in Drosophila melanogaster. Genetics 166:1807–1823.

Hoffmann R, Valencia A. 2004. A gene network for navigating the liter-

ature. Nat Genet 36:664.

Hoffmann R, Valencia A. 2005. Implementing the iHOP concept for

navigation of biomedical literature. Bioinformatics (Oxford,

England) 21(Suppl 2), ii252–258.

Jensen JD, Bauer DuMont VL, Ashmore AB, Gutierrez A, Aquadro CF.

2007. Patterns of sequence variability and divergence at the dimin-
utive gene region of Drosophila melanogaster: complex patterns

suggest an ancestral selective sweep. Genetics 177:1071–1085.

Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD. 2005.
Distinguishing between selective sweeps and demography using

DNA polymorphism data. Genetics 170:1401–1410.

Kayser M, Brauer S, Stoneking M. 2003. A genome scan to detect can-

didate regions influenced by local natural selection in human pop-

ulations. Mol Biol Evol 20:893–900.

Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM. 2006. Genomic

signatures of positive selection in humans and the limits of outlier
approaches. Genome Res. 16:980–989.

Kim Y, Nielsen R. 2004. Linkage disequilibrium as a signature of selective

sweeps. Genetics 167:1513–1524.

Kim Y, Stephan W. 2002. Detecting a local signature of genetic hitchhik-

ing along a recombining chromosome. Genetics 160:765–777.

Langton PF, Colombani J, Chan EHY, Wepf A, Gstaiger M, Tapon N.

2009. The dASPP-dRASSF8 complex regulates cell-cell adhesion

during Drosophila retinal morphogenesis. Curr Biol 19:1969–7198.

Lee JM, Sonnhammer ELL. 2003. Genomic gene clustering analysis of

pathways in eukaryotes. Genome Res 13:875–882.

Leulier F, Lhocine N, Lemaitre B, Meier P. 2006. The Drosophila inhibitor

of apoptosis protein DIAP2 functions in innate immunity and is
essential to resist gram-negative bacterial infection. Mol Cell Biol 26:

7821–7831.

Li H, Stephan W. 2006. Inferring the demographic history and rate of
adaptive substitution in Drosophila. PLoS Genet 2:e166.

Li J, Zhang L, Zhou H, Stoneking M, Tang K. 2011. Global patterns of
genetic diversity and signals of natural selection for human ADME

genes. Hum Mol Genet 20:528–540.

Li X, Carthew RW. 2005. A microRNA mediates EGF receptor signaling

and promotes photoreceptor differentiation in the Drosophila eye.

Cell 123:1267–1277.

McVean GAT, Cardin NJ. 2005. Approximating the coalescent with re-

combination. Philos Trans R Soc London Ser B: Biol Sci 360:

1387–1393.

Nielsen R. 2005. Molecular signatures of natural selection. Annu Rev

Genet 39:197–218.

Nielsen R, Williamson S, Kim Y, Hubisz M, Clark A, Bustamante C. 2005.

Genomic scans for selective sweeps using SNP data. Genome Res 15:

1566–1575.

Ohh M. 2006. pVHL’s kryptonite: E2-EPF UCP. Cancer Cell 10:95–97.

Oleksyk TK, Smith MW, O’Brien SJ. 2010. Genome-wide scans for foot-

prints of natural selection. Philos Trans R Soc London Ser B: Biol Sci

365:185–205.

Pascual M, Chapuis MP, Mestres F, Balanyà J, Huey RB, Gilchrist GW,
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