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ABSTRACT

Motivation: Identifying repeated factors that occur in a
string of letters or common factors that occur in a set of
strings represents an important task in computer science and
biology. Such patterns are called motifs, and the process of
identifying them is called motif extraction. In biology, mo-
tifs may correspond to functional elements in DNA, RNA,
or protein molecules. Motifs may also correspond to whole
loci whose sequences are highly similar because of recent du-
plication (e.g., transposable elements or recently duplicated
genes). A DNA motif is a nucleic acid sequence that has a
specific biological function, for instance encoding the DNA
binding sites for a regulatory protein (transcription factor).

Results: In this article, we introduce MoTeX, the first high-
performance computing (HPC) tool for MoTif eXtraction
from large-scale datasets. It uses state-of-the-art algorithms
for solving the fixed-length approximate string matching
problem. MoTeX comes in three flavors: a standard CPU ver-
sion; an OpenMP-based version; and an MPI-based version.
We show that MoTeX produces similar and partially identi-
cal results to current state-of-the-art tools with respect to
accuracy as quantified by statistical significance measures.
Moreover, we show that it matches or outperforms compet-
ing tools in terms of runtime efficiency. The MPI-based
version of MoTeX requires only one hour to process all hu-
man genes on 1056 processors, while current sequential pro-
grammes require more than two months for this task.

Awvailability: http://wuw.exelixis-lab.org/motex (open-
source code)
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1. INTRODUCTION

Identifying repeated factors that occur in a string of letters
or common factors that occur in a set of strings represents an
important task in computer science and biology. Such pat-
terns are called motifs, and the process of identifying them
is called motif extraction. Motif extraction has numerous
direct applications in areas that require some form of text
mining, that is, the process of deriving reliable information
from text [17]. Here we focus on its application to molecular
biology.

In biological applications, motifs correspond to functional
and/or conserved DNA, RNA, or protein sequences. Alter-
natively, they may correspond to (recently, in evolutionary
terms) duplicated genomic regions, such as transposable el-
ements or even whole genes. It is mandatory to allow for
a certain number of mismatches between different occur-
rences of the same motif since both single nucleotide poly-
morphisms as well as errors introduced by wet-lab sequenc-
ing platforms might have occurred. Hence, molecules that
encode the same or related functions do not necessarily have
exactly identical sequences.

A DNA motif is defined as a sequence of nucleic acids that
has a specific biological function (e.g., a DNA binding site
for a regulatory protein). The pattern can be fairly short,
5 to 20 base-pairs (bp) long, and is known to occur in dif-
ferent genes [19], or several times within the same gene [21].
The DNA motif extraction problem is the task of detecting
overrepresented motifs as well as conserved motifs in a set
of orthologous DNA sequences. Such conserved motifs may,
for instance, be potential candidates for transcription factor
binding sites.

A single motif is a string of letters (word) on an alpha-
bet ¥. Given an integer error threshold e, a motif on X is
said to e-occur in a string s on X, if the motif and a factor
(substring) of y differ by a distance of e. In accordance with
the pioneering work of Sagot [22], we formally define the re-
peated motifs problem and the common motifs problem as
follows:

The repeated motifs problem takes as input a string s, the
quorum ¢ > 2, the maximal allowed distance (error thresh-
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old) e > 0, and the length k for the motifs. It consists in
finding all motifs of length £, such that each motif e-occurs
at least ¢ times in s. Such motifs are called valid. The values
for k, e, and ¢ are determined empirically.

The common motifs problem is a generalization of the
repeated motifs problem. It takes as input a set s1,...,sn
of strings on 3, where N > 2, the quorum 1 < g < N, the
maximal allowed distance e, and the length k for the motifs.
It consists in determining all motifs of length k, such that
each motif e-occurs in at least ¢ input strings. Such motifs
are called wvalid.

1.1 Motif extraction algorithms

In accordance with [7], motif extraction algorithms can
be divided into two major classes: (1) word-based (string-
based) methods that mostly rely on exhaustive enumeration,
that is, counting and comparing oligonucleotide sequence
(k-mer) frequencies; and (2) probabilistic sequence models,
where the model parameters are estimated using maximum-
likelihood or Bayesian inference methods.

Word-based methods guarantee global optimality and are
suitable for detecting short motifs ranging between 5 to 20
bp. Therefore, they are useful for motif finding in eukaryotic
genomes where motifs are generally shorter than in prokary-
otes [7]. Word-based methods are also relatively fast, when
implemented using efficient data structures, such as suffix
trees [26]. They also represent a good choice for finding
totally constrained motifs, that is, all motif instances are
exactly identical (i.e., e := 0). However, for typical tran-
scription factor motifs that often have several weakly con-
strained positions (several observed mutations), word-based
methods can be problematic. The results often need to be
post-processed using clustering methods [27]. Word-based
methods also suffer from the problem of producing too many
spurious motifs (see Section 5 for details).

In probabilistic sequence models, motifs are modeled by
a position weight matrix [3]. Position weight matrices are
often visualized as pictograms where each position is repre-
sented by a stack of letters whose height is proportional to
the observed occurrence frequency of the respective letter
at the specific position [23]. Probabilistic methods have the
advantage of tying their search parameters by incorporating
background knowledge (e.g., accounting for palindromes).
The disadvantage is that they rely on probabilistic mod-
els of the regulatory regions. These models are sensitive to
small changes in the input data [7]. The majority of proba-
bilistic motif extraction algorithms has been designed to find
longer or more general motifs than required for identifying
transcription factor binding sites. Therefore, they are more
appropriate for motif finding in prokaryotes, where the mo-
tifs are generally longer than in eukaryotes. However, these
algorithms are not guaranteed to find globally optimal so-
lutions. This is because they employ local searches, such as
Gibbs sampling, expectation maximization, or greedy algo-
rithms, that may converge to locally optimal solutions only.

Here, we focus on word-based methods for motif extrac-
tion. A plethora of word-based tools for motif extraction,
such as RISO [18, 22], MITRA [9], YMF [24], Weeder [19],
FLAME [10], and RISOTTO [4], have already been released.
The comprehensive study by Tompa et al. [25] compared
thirteen different word-based and probabilistic methods on
real and synthetic datasets, and identified Weeder and YMF—
which are both word-based—as the most effective methods
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for motif extraction.

Weeder initially indexes the set of N sequences using a
generalized suffix tree [26], and subsequently searches for
non-exact occurrences of motifs along different paths of the
suffix tree. This approach was first introduced by Sagot in
RISO [22]. For every valid motif, one has to walk along
at most N x n different paths in the suffix tree, where n
is the average sequence length. For every word of length
k induced by a path in the tree, there are at most |X|°k°
valid motifs, where |3| is the size of the alphabet X, and e
is the maximal allowed number of mismatches. Hence, the
overall time complexity of this approach is O(|S|*k*N?n).
The additional factor N is required to annotate the suf-
fix tree nodes [19]. Weeder further assumes that the mis-
matches are distributed uniformly along the motif. Because
of this assumption, the search space explored by Weeder
can be substantially decreased. Thus, the time complex-
ity is reduced to O([1/€]°|Z|°N?n), where ¢ < 1 is an
initial error ratio determined by the algorithm, such that
e = [ek]. RISOTTO, the successor of RISO, improved upon
the average-case time complexity. It also runs more than two
times faster than RISO in practice [4]. Moreover, RISOTTO
can extract structured motifs, which are motifs composed of
several disjoint single motifs placed at given distances from
each other.

YMEF is based on an empirical probabilistic motif model
that was derived from a study of known transcription factor
binding sites in yeast. The input of the algorithm is a set of
N DNA sequences, the number of letters in the motifs to be
enumerated, and the transition matrix for a Markov chain of
order m constructed from the (m+ 1)-mer frequencies of the
full yeast genome. The algorithm finds all motifs that occur
more frequently than the expected value in the set of DNA
sequences. It is thus guaranteed to report the best motifs
according to the YMF scoring criterion. It simply main-
tains a counter that corresponds to each possible motif. It
scans the set of DNA sequences once using a sliding window
and increments the counter for each motif that matches the
sliding window. YMF scales linearly with the total length
of the input sequences, but scales poorly with motif length,
since it maintains a counter for each possible motif. It has
been shown that, in cases where the known motif cannot be
captured by the YMF’s derived motif model, YMF is not as
accurate [24].

1.2  Our Contribution

All aforementioned motif extraction algorithms exhibit a
part of the following disadvantages: First, their time com-
plexity depends on the motif length k. Hence, they can only
be used for finding very short motifs. For instance, YMF
allows only up to k := 8 and Weeder up to k := 12. Second,
their time complexity depends on the size || of the alpha-
bet. Hence, they are not suitable for detecting motifs drawn
from large alphabets (e.g., amino acids, where |X| = 20).
Third, their time complexity grows exponentially with the
maximal allowed number of mismatches e. Thus, they are
not suitable for detecting longer motifs with high error rates,
say k := 13 and e := 4. Finally, the probabilistic sequence
models are not guaranteed to find globally optimal solutions.

There are two additional disadvantages: First, although
some theoretical work has been done [1, 2, 15], existing tools
are only designed for identifying motifs under the Hamming
distance model (mismatches) but not under the edit distance
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model (indels). Indels in biological sequences may occur be-
cause of insertions or deletions of genomic segments at var-
ious genomic locations or due to sequencing errors. Second,
they are not designed or implemented for high-performance
computing (HPC). For instance, Weeder and RISOTTO,
which are currently two of the most widely used tools for
motif extraction, require more than two months to process
the full upstream Homo sapiens genes dataset with k := 12
and e := 4, making this kind of analyses intractable.

To alleviate these shortcomings, we introduce MoTeX, the
first word-based HPC tool for MoTif eXtraction from large-
scale datasets. It can be used to tackle both the repeated
motifs problem and the common motifs problem by making a
stricter assumption on motif validity, which we will elaborate
later on. MoTeX is based on string algorithms for solving the
so-called fixed-length approximate string matching problem
under the edit distance model [14] and under the Hamming
distance model [6]. Given that k < w, where w is the size of
the computer word (in practice, w = 64 or w = 128), the time
complexity of this approach is O(n?) for the repeated motifs
problem and O(N?n?) for the common motifs problem. The
parallel time complexity is O(n?/p) for the repeated motifs
problem and O(N?n?/p) for the common motifs problem,
where p is the number of available processors.

Hence, MoTeX exhibits the following advantages: under the
realistic assumption that k£ < w, time complexity does not
depend on (i) the length k for the motifs (ii) the size || of
the alphabet, or (iii) the maximal allowed distance e. Given
the stricter assumption on motif validity, it is guaranteed to
find globally optimal solutions. Furthermore, the size of the
output is linear with respect to the size of the input. In addi-
tion, MoTeX can identify motifs either under the edit distance
model or the Hamming distance model. Finally, apart from
the standard CPU version, MoTeX comes in two HPC fla-
vors: the OpenMP-based version that supports the symmet-
ric multiprocessing programming (SMP) paradigm; and the
MPI-based version that supports the message-passing pro-
gramming (MPP) paradigm. For instance, the MPI-based
version of MoTeX requires about one hour to process the full
upstream Homo sapiens genes dataset using 1056 proces-
sors, for any value of k and e.

2. DEFINITIONS AND NOTATION

In this section, in order to provide an overview of the
algorithms used later on, we give a few definitions, generally
following [5].

An alphabet ¥ is a finite non-empty set whose elements are
called letters. A string on an alphabet X is a finite, possibly
empty, sequence of elements of 3. The zero-letter sequence
is called the empty string, and is denoted by €. The length of
a string z is defined as the length of the sequence associated
with the string z, and is denoted by |z|. We denote by x[i],
for all 1 < i < |z|, the letter at index 7 of x. Each index 1,
for all 1 <4 < |z|, is a position in & when x # ¢. It follows
that the ith letter of x is the letter at position 7 in x, and
that

z=uz[l..|z]].

A string x is a factor of a string y if there exist two strings
u and v, such that y = uxv. Let the strings z,y, u, and v,
such that y = uzv. If u = ¢, then z is a prefix of y. lf v = ¢,
then z is a suffiz of y.
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Let  be a non-empty string and y be a string. We say
that there exists an (exact) occurrence of x in y, or, more
simply, that x occurs (exactly) in y, when z is a factor of y.
Every occurrence of & can be characterised by a position in
y. Thus we say that x occurs at the starting position ¢ in y
when y[i..i+ |z| — 1] = z. It is sometimes more suitable to
consider the ending position i+ |x| — 1.

The edit distance, denoted by dg(z,y), for two strings x
and y is defined as the minimum total cost of operations re-
quired to transform string x into string y. For simplicity, we
only count the number of edit operations and consider that
the cost of each edit operation is 1. The allowed operations
are the following:

e Ins: insert a letter in y, not present in xz; (g,b), b # ¢;
e Del: delete a letter in y, present in z; (a,€), a # ¢;

e Sub: substitute a letter in y with a letter in x; (a, b), a #
b, a,b#e.

The Hamming distance dg is only defined on strings of
the same length. For two strings =z and y, dmg(z,y) is the
number of positions in which the two strings differ, that is,
have different letters. Formally

|z| . . .

1, if xfi] # yli]

Su(z,y) = Z La(g2ype » where Lygy1g = { 0. otherwise
=1

For the sake of completeness, we define dm(z,y) = oo for
strings x, y such that |z| # |y|.

3. ALGORITHMS

In this section, we first formally define the fized-length ap-
prozimate string matching problem under the edit distance
model and under the Hamming distance model. We then
provide a brief description and analysis of the sequential
algorithms to solve it. Finally, we show how both the re-
peated motifs problem and the common motifs problem can
be reduced to the fixed-length approximate string matching
problem, by using a stricter assumption than the one in the
initial problem definition for the validity of motifs.

PrROBLEM 1  (EDIT DISTANCE). Given a string x of length
m, a string y of length n, an integer k, and an integer e < k,
find all factors of y, which are at an edit distance less than,
or equal to, e from every factor of fized length k of x.

PROBLEM 2 (HAMMING DISTANCE). Given a string x of
length m, a string y of length n, an integer k, and an inte-
ger e < k, find all the factors of y, which are at a Hamming
distance distance less than, or equal to, e from every factor
of fixed length k of x.

Let D[0..n,0..m] be a dynamic programming (DP) ma-
trix, where D[, j] contains the edit distance between some
factor y[i’ .. 4] of y, for some 1 < i’ <4, and factor x[max{1, j—
k+1}..j]of z, for all 1 < ¢ < n, 1 < j < m. This
matrix can be obtained through a straightforward O(kmn)-
time algorithm by constructing DP matrices D*[0..7n,0..k],
for all 1 < s <m —k+ 1, where D°[, j] is the edit distance
between some factor of y ending at y[i] and the prefix of
length j of z[s..s + k — 1]. We obtain D by collating D*
and the last row of D®, for all 2 < s < m — k+ 1. We say
that z[max{1,j — k + 1}..j] e-occurs in y ending at y[i] iff
Dli,j] <e,forall1<j<m,1<i<n.
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Table 1: Matrix D for x := y := GGGTCTA and k := 3
0o 1

2 3 4 5 6 7
[e]c]ele]T]C]T[A]

o[€] [OTTT2T3T3T373T3
Gl [ofjof1]2]2]213T3
o[G] [0]oO[T]T[2]3]3
s[G] [0]ofo0[0]1[2]3(3
JT][Oo]T]T]T[o[1[2]2
s[c] [o]T2]2]1[0]1(2
s[T|[O]T2[3T2[1]0]1
&) [o]T]2]3[3]2]1]0

ExampLE 1. Let the string x := GGGTCTA, the string y :=
z, and k = 3. Table 1 illustrates matriz D. Consider,
for instance, the case where j = 6. Column 6 contains all
e-occurrences of factor x[4..6] = TCT, that is the factor of
length k = 3 ending at position 6 of x, iny. Cell D[4,6] = 2,
tells us that there exists some factor y[i’ .. 4] of y, such that,
fori' =2, 0p(y[2..4],z[4..6]) = 2.

Iliopoulos, Mouchard, and Pinzon devised MaxShift [14],
an algorithm with time complexity O(m[k/w]|n), where w
is the size of the computer word. By using word-level paral-
lelism MaxShift can compute matrix D efficiently. The algo-
rithm requires constant time for computing each cell D[z, j]
by using word-level operations, assuming that ¥ < w. In
the general case it requires O([k/w]) time. Hence, algo-
rithm MaxShift requires time O(mn), under the assumption
that & < w. The space complexity is O(m) since each row
of D only depends on the immediately preceding row.

THEOREM 1  ([14]). Given a string x of length m, a
string y of length n, an integer k, and the size of the com-

puter word w, matriz D can be computed in time O(m[k/w]n).

Let M[0..n,0..m| be a DP matrix, where M[i, j] contains
the Hamming distance between factor y[max{1,i—k+1} . .1
of y and factor z[max{1l,j—k+1}..j] of z, forall 1 <17 <m,
1 < j < m. Crochemore, Iliopoulos, and Pissis devised an
analogous algorithm [6] that solves the analogous problem
under the Hamming distance model with the same time and
space complexity.

THEOREM 2  ([6]). Given a string x of length m, a string
y of length n, an integer k, and the size of the computer word
w, matrix M can be computed in time O(m[k/w]n).

EXAMPLE 2. Let the string x := GGGTCTA, the string y :=
xz, and k := 3. Table 2 illustrates matriz M.

ExaMPLE 3. Let the string x := GTGAACT, the string y :=
GTCACGT, and k := 3. Table 3 illustrates matriz M. Con-
sider, for instance, the case where j = 7. Column 7 con-
tains all e-occurrences of factor z[5..7] = ACT, that is, the
factor of length k = 3 ending at position 7 of x, in y. Cell
M6,7) = 1, tells us that du(y[4..6],z[5..7]) = 1.

By making the following stricter assumption for motif va-
lidity, both the repeated motifs problem and the common
motifs problem can be directly and efficiently solved using
the above algorithms.
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Table 2: Matrix M for x := y := GGGTCTA and k :=3
0o 1

2 3 4 5 6 7
[efe]ele]T]c]T]A]

ofe] [OTT]2]3T3[3T3T3
Gl [oJof1]2]3[3]3]3
2[cl{o]o]o]T]2]3]3]3
s[a] [ofo]oJo[1]2]3]3
JT] [OlT]{T[T[0]2]2]3
s[c] [ol1]2]2]2]0]3]2
s[T] [O]T]2]3]2]3]0[3
|A] [0]T]2]3]3]2]3]0

Table 3: Matrix M for z := GTCACGT, y := GTGAACT, and
k:=3

0O 1 2 3 4 5 6 7

Le[GIT[G[A[A[C]T]

o[el [0TT]2T3T3[3T373
e [o]o21213131313
2[T] [O]T]0]3]2[313]2
s[cl{ofT]{2]1[3]2]2]3
JalfolT2]73]1[213]2
s[cl[O0]T[2]3]3]2[1[3
s|Gl[0f0]2]23[312]1
[T [o]T[0[3]2]3]3]2

DEFINITION 1. A walid motif is called strictly valid iff it
occurs exactly, at least once, in (any of ) the input string(s).

Consider, for instance, the DNA alphabet ¥ = {A,C,G,T}.
The number of possible DNA motifs of length k := 10 is
|LF = 1,048,576. Given a dataset with a size of ~ 1MB,
the possibility that there exists a motif that is valid, but
not strictly valid, is rather unlikely. In other words, given
such a dataset, the possibility that there exists a pattern
which does not occur exactly, at least once, in the dataset
and it also satisfies all the restrictions imposed by the input
parameters, is rather unlikely.

The repeated motifs problem (detecting strictly valid mo-
tifs) can be directly solved by first setting x := s and y := s,
where s is the input string of length n, and subsequently
solving the fixed-length approximate string matching prob-
lem for z and y. Consider, for example, the repeated motifs
problem under the Hamming distance model. We define an
array v of size n, such that v[j], for all k£ < j < n, denotes
the total number of e-occurrences of motif s[j — k + 1..]
in s; we set v[j] := 0, for all 0 < j < k. We can compute
array v in a straightforward way: as soon as we have com-
puted M[i, j], we increment v[j] by one iff M[i, j] < e, for
all k < i < n. As soon as we have computed matrix M, it
suffices to traverse array v and report s[j —k—+1..j], for all
k < j < mn, as a strictly valid motif iff v[j] > ¢. Maintain-
ing array v does not induce additional costs. Therefore, the
repeated motifs problem can be solved in time O(n?).

EXAMPLE 4. Let the input string s := GGGTCTA, e := 1,
q =2, and k := 3. Table 2 illustrates matrix M. Array v
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18:
j: 0o 1 2 3 4 5 6 7
vjJ: 0 0 0 2 2 1 1 1

and so the strictly valid motifs are s[1..3] = GGG and s[2..4] =

GGT.

The common motifs problem (detecting strictly valid mo-
tifs) can be directly solved by solving the fixed-length ap-
proximate string matching problem for all N2 pairs of the
N input strings. Consider, for example, the common motifs
problem under the Hamming distance model. We use an ar-
ray u, for each input string s,, such that for all 1 <r < N,
k < j < |sr|, ur[j] contains the total number of strings in
which motif s.[j — k + 1..j] e-occurs; we set u,[j] := 0, for
all 0 < j < k. Array u,, for all 1 < r < N, can easily
be computed, by computing matrix M for pair (s,,s:), for
all 1 <t < N. While computing matrix M, we increment
uyr[j] only once iff M[i, j] < e, for some k < i < |s¢|; as soon
as we have computed the N different matrices M for s,, it
suffices to iterate over array u, and report s.[j —k+1..j],
for all k < j < |s;|, as a strictly valid motif ¢ff u,[j] > ¢. An
array vr, such that v, [j], for all 1 < j < [s.|, denoting the
total number of e-occurrences of motif s.[j —k + 1..j] in
s1,...,SN can also be maintained, in analogy to the repeated
motifs case. Maintaining arrays u, and v, does not induce
additional costs. Therefore, the common motifs problem can
be solved in time O(n2) per matrix, where n is the average
length of the N strings, thus O(N?n?) in total.

EXAMPLE 5. Let the input strings s, := GTGAACT, s; :=
GTCACGT, e := 1, q := 2, and k := 3. Further, let the current
state of arrays u, and v, be:

Jj: o
urlj]: 0
velf]: O

o o=

2
0
0

O O w
N s

5
0
0

N = o

7
0
0

Table 3 illustrates matriz M. Arrays v, and u, are:

j: 0o 1 2 3 4 5 6 7
urfjJ: 00 01 2 0 2 1
vefj]: 00 01 3 0 3 1

and so the strictly valid motifs are sr[2..4] = TGA and sy[4..6] =

AAC.

4. IMPLEMENTATION

We implemented MoTeX as a programme that solves the
repeated motifs problem and the common motifs problem
for strictly valid motifs. A valid motif is strictly valid #ff it
occurs exactly, at least once, in (any of) the input string(s).
MoTeX was implemented in the C programming language un-
der Linux. It is distributed under the GNU General Public
License (GPL). The open-source code and documentation
are available at http://www.exelixis-1lab.org/motex. The
mandatory input parameters are:

e a file with the input string(s) in FASTA format (se-
quences);

e the distance (edit/Hamming) to be used for extracting
the motifs;

e the length k for the motifs;
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e the maximal allowed distance e;

e the quorum ¢’ < 100 (%) as the proportion of se-
quences in the input dataset in which a reported motif
must e-occur at least once.

There are additional input parameters. For example, an
integer parameter occ, such that the total number of e-
occurrences of a reported motif in (any of) the input se-
quence(s) is at least occ.

Given these parameters, MoTeX outputs a text file con-
taining the strictly valid motifs. For each reported motif,
it also outputs the total number of sequences in which the
motif e-occurs at least once and the total number of its e-
occurrences. To ensure that the output of MoTeX is linear
with respect to the size of the input dataset, we need to
report each distinct motif only once. This is done by insert-
ing a strictly valid motif into a trie data structure [11]—a
deterministic finite automaton—only if it does not already
exist in it. The time needed to traverse the trie from the
root to the leaf does not depend on the trie size. It is only
proportional to the motif length. Trivially, MoTeX reports
a motif only if it does not already exist in the trie, thus,
avoiding duplicates.

Apart from the standard CPU version, MoTeX comes in two
HPC flavors: the OpenMP-based version for shared memory
systems and the MPI-based version for distributed memory
systems. The user can choose the best-suited version de-
pending on:

e the total size of the input sequence(s);

e the nature of the input dataset, for instance, one (or
a few) very long sequence(s), or many relatively short
sequences;

e the available HPC architecture;

e the number p > 1 of available processors.

In our implementation, we distinguish among two cases:
p < N and p > N, where N is the number of input se-
quences.

41 Casel:p<N

This is the common motifs problem, that is, we have a
large number of relatively short sequences. The user can
choose any of the two HPC versions. In this case, MoTeX
evenly distributes the computation of the N? distinct DP
matrices for the IV input sequences in a straightforward man-
ner across the p processors. Therefore, if p < N, the com-
mon motifs problem for strictly valid motifs can be solved
in parallel in time O(N?n?/p).

4.2 Case2:p>N

This case refers to either the repeated motifs problem with
one very long sequence or the common motifs problem with
just a few very long sequences. The user is advised to chose
the MPI-based version. Because there are fewer embarrass-
ingly parallel tasks than for Case 1 above, we need to exploit
fine-grain parallelism in the DP calculation. For this pur-
pose, MoTeX deploys an efficient cost-optimal parallelization
scheme [16, 6] for fixed-length approximate string-matching.
In the following, we describe this parallelization scheme for
computing matrix D in more detail.
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Figure 1: Mapping of the cells of matrix D to the available processors for n:=m := 17 and p:=14

Decomposition technique.

We use the functional decomposition technique. The ini-
tial focus is on the actual computation, rather than on the
data manipulated by this computation. Consider, for ex-
ample, the repeated motifs problem under the edit distance
model. The main observation for parallelisation is that cell
D[¢, j] is computed by using cells D[¢ — 1,j], D[i — 1,5 —
1], and D[i,j — 1] [14]. Based on this, we can partition
the problem of computing matrix D[0..n,0..m] into a set
{Ao,A1,...,Apim} of anti-diagonal arrays. This is also
known as a sequence of parallel wavefronts of a computa-
tion. As shown in Equation 1, the computation of each
cell in each diagonal (parallel step) is independent from the
other cells of the same diagonal, and can thus be executed
concurrently. The size of A,, that is, the number of cells of
A, , is denoted by d,.

Dy —z,z]: 0<a<v (a)
Dv—z,z]:0<axz<m+1 (b)
Dln—z,v—n+axa]:

0<z<n+m-v+1 (c)

Aylz] =
where

(a) f0<v<m
b) ifm<v<n
(¢) fn<v<nt+m+1

Mapping technique.

Regarding the mapping of tasks to the available proces-
sors, we distribute the computation of the cells for each
diagonal among the available processors. Without loss of
generality, we assume that for each diagonal array A,, each
processor r, for 0 < r < p, is assigned d, /p contiguous cells
of A,. The mapping is described by Equation 2.
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flT; = r[au/p]
L=fr+T[6/pl -1

fo =r10v/p] + 6, mod p
L=+ 16/p] -1

Tt relies on calculating both the indices f, and [], of the
first and the last cell of A, mapped to processor r, respec-
tively. In other words, processor r is assigned the computa-
tion of A,[f) ..1}] (see Fig. 1 for v = 13 and v = 23). The
auxiliary space required is O(m/p), as each diagonal only
depends on the two immediately preceding diagonals.

if r< d, mod p

(2)

otherwise

Processor communication.

The data exchange between the processors involves a con-
stant number of point-to-point message transfers (neighbor-
ing cells) at each parallel step [13].

Since the number of cells to be computed is ©(nm), the
number of parallel steps is ©(n)—exactly n+m+1 diagonals—
and each processor is assigned the computation of O(m/p)
cells—the size of each diagonal is O(m)—at each parallel
step. Therefore, if p > N, the repeated motifs problem for
strictly valid motifs can be solved in parallel time O(n?/p).
The common motifs problem for strictly valid motifs can be
solved in parallel time O(N?n?/p).

5. STATISTICAL SIGNIFICANCE

On the one hand, word-based methods guarantee global
optimality; on the other hand, they suffer from the prob-
lem of producing too many spurious motifs. Consider, for
instance, the case when k := 12 and e := 3. When a valid
motif is expanded by one symbol, it becomes a valid motif
for k := 13 and e := 4, as all its e-occurrences are also valid
e-occurrences of the longer one. Thus, we need a method
for sorting the reported motifs according to their statistical
significance.

For this purpose we use the z-score, a statistical measure
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of significance, that compares the actual number of occur-
rences of a motif with the expected value:

Occey — nN7(x,e)

VN7 (z,e)(1 — w(z,e))
where Occ, is the observed number of occurrences of motif
x, w(x,e) is the probability that x occurs in a sequence of
the dataset with at most e mismatches, and n/N is the total
accumulated length of the sequences in the input dataset.

SMILE [18] is a post-analysis programme that, given the
output of a motif extractor, calculates the z-score and other
statistical measures for assessing the statistical significance
of the reported motifs. The significance of the reported mo-
tifs is computed from their occurrence frequency in a random
subset of the input data. Finally, SMILE sorts the motifs
by their z-scores in descending order. MoTeX can produce a
SMILE-compatible output file, which can then directly be
used as input for SMILE.

Zscore =

6. EXPERIMENTAL RESULTS

All experiments were conducted on a Linux-based Infiniband-

connected cluster using 1 up to 1056 2.4 GHz AMD 6136
processors.

Although MoTeX is based on an exact and deterministic
algorithm, we initially evaluated its accuracy. The reasons
for doing this are twofold: first, to ensure that our imple-
mentation is correct; and, second, to evaluate the impact of
our stricter motif validity assumption.

As basic dataset, we used 1200 1000 bp-long upstream se-
quences of Homo sapiens genes with a total size of 1.2MB,
retrieved from the ENSEMBL [8] database. We extracted
synthetic datasets, denoted by < «, Bmin, Bmax,y >, from
this basic dataset as follows. We initially generated 100 ran-
dom DNA motifs, each of length «; then, we implanted each
motif into a randomly selected fraction v % of the sequences
in the basic dataset, by inserting a random number of mis-
matches, ranging from Bumin := 0 t0 PBmax, in each different
occurrence of the motif. We executed MoTeX with dataset
< &, Pmin, Pmax,y > as input and also set k := «, € := Bmax,
and ¢’ := v as input arguments. Finally, we counted how
many out of the 100 motifs we had initially implanted were
found. We used different values for a, fBmax, and . The
results in Table 4 demonstrate the high accuracy of MoTeX.
It was able to identify all implanted motifs.

In order to evaluate the accuracy of MoTeX under more
difficult conditions, we repeated the same set of experiments
by setting Bmin := 1. In other words, we made sure that,
for each randomly generated motif, no exact occurrence was
implanted in any sequence. Again, the results in Table 5
demonstrate the high accuracy of MoTeX, which was able to
identify all implanted motifs.

We also make available, on the website of MoTeX, the pro-
gramme and the basic dataset used to generate the afore-
mentioned synthetic datasets (Table 4 and Table 5) for re-
producing the results on MoTeX accuracy.

To further evaluate the accuracy of MoTeX under statis-
tical measures of significance, we compared its output to
the corresponding output of RISOTTO using SMILE (see
Section 5 for details). The reason for choosing RISOTTO
for this comparison is that RISOTTO is based on an exact
and deterministic algorithm and guarantees global optimal-
ity. As input dataset for the two programmes, we used the
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Table 4: Number of identified motifs by MoTeX for

Bmin := 0
Dataset Implanted Identified Extracted
motifs implanted motifs motifs
<8,0,2,1> 100 100 64, 712
<8,0,2,10 > 100 100 64,789
< 8,0,2,25 > 100 100 64,712
< 8,0,2,50 > 100 100 64,728
<10,0,3,1 > 100 100 540, 930
<10,0,3,10 > 100 100 545, 980
< 10,0,3,25 > 100 100 544,412
< 10,0,3,50 > 100 100 541, 965
<12,0,4,1 > 100 100 1,013,738
<12,0,4,10 > 100 100 1,029, 950
<12,0,4,25 > 100 100 1,023, 758
< 12,0,4,50 > 100 100 1,018, 555

Each of the datasets consists of 1200 upstream sequences of Homo

sapiens genes.

Table 5: Number of identified motifs by MoTeX for

Bmin := 1
Dataset Implanted Identified Extracted
motifs implanted motifs motifs
<8,1,2,1> 100 100 64,724
<8,1,2,10 > 100 100 64,834
<8,1,2,25 > 100 100 64, 745
< 8,1,2,50 > 100 100 64,717
<10,1,3,1 > 100 100 540, 730
<10,1,3,10 > 100 100 545,851
<10,1,3,25 > 100 100 544,516
<10,1,3,50 > 100 100 542, 168
<12,1,4,1> 100 100 1,018,579
< 12,1,4,10 > 100 100 1,029, 801
<12,1,4,25 > 100 100 1,023,429
< 12,1,4,50 > 100 100 1,018,280

Each of the datasets consists of 1200 upstream sequences of Homo
sapiens genes.

1200 upstream sequences of Homo sapiens genes. The re-
sults obtained by the two programmes using SMILE were
similar and partially even identical. The highest scoring
motifs for k := 8, e := 1, ¢ := 10 and k := 10, e := 2,
q" := 10 are given in Table 6 and Table 7, respectively.
Note that, SMILE reports the same set of highest scoring
motifs with the two programmes in both cases. The small
differences observed in Table 7 between the rankings of the
highest scoring motifs reported for the two programmes are
due to the randomization in SMILE.

We also evaluated the efficiency of MoTeX in comparison to
Weeder (version 1.4.2) and RISOTTO. We did not include
YMF in this comparison because of the input parameter re-
strictions; the maximum allowed length & for the motifs is 8.
We compared the standard CPU version and the OpenMP-
based version of MoTeX against Weeder and RISOTTO for
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Table 6: Highest scoring motifs for k := 8, e := 1, and
¢’ := 10 extracted from 1200 upstream sequences of
Homo sapiens genes

Motif Zscore
AAAAATAA  31.96
TATTTATA 30.70
TTATTTTT 27.86
TTTATTTT 26.92
TATAAATA  26.06
TATTTTTA  25.90
TTATATTT 25.07

(a) RISOTTO

Motif Zscore
AAAAATAA  31.96
TATTTATA 30.70
TTATTTTT 27.86
TTTATTTT 26.92
TATAAATA  26.06
TATTTTTA  25.90
TTATATTT  25.07

(b) MoTeX

Table 7: Highest scoring motifs for k := 10, e := 2,
and ¢’ := 10 extracted from 1200 upstream sequences
of Homo sapiens genes

Motif Zscore
TATTTTTATA 36.91
AAATAAATAT  35.07
AATAAATATT 33.16
TTTATATTTT 32.38
AAATATATAT 32.35
TATTTTTATT 31.61
AAAATAAACA  31.55

(a) RISOTTO

Motif Zscore
AAATAAATAT 34.93
TATTTTTATA  32.96
TTTATATTTT 32.39
AACATATAAA  32.26
AAAATAAACA 31.86
AATAAATATT 31.75
TATTTTTATT 31.71

(b) MoTeX

the common motifs problem. As input sequences, we used
1062 upstream sequences of Bacillus subtilis genes of to-
tal size 240KB, obtained from the RISOTTO website [20].
We measured the elapsed time for each programme for dif-
ferent combinations of input parameters. In particular, we
provided different values for the motif length k, the maxi-
mal allowed Hamming distance e, and the quorum ¢’, as a
proportion of sequences in the input dataset. As depicted
in Fig. 2, the performance of MoTeX is independent of the
aforementioned input parameters and corroborates our the-
oretical findings. The standard CPU version of MoTeX is
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Figure 3: Elapsed-time comparison of RISOTTO
and MoTeX for the common motifs problem using the
full upstream Homo sapiens genes dataset

competitive for short motifs and becomes the fastest as the
length £ for the motifs and the maximal allowed Hamming
distance e increase. As expected, the OpenMP-based ver-
sion of MoTeX with 48 processing threads (-t 48) is always
the fastest.

As a next test, we compared the MPI-based version of Mo-
TeX against RISOTTO. We did not include Weeder in this
comparison since the maximum allowed length £ for the mo-
tifs in Weeder is 12. As input sequences, we used the full
upstream Homo sapiens genes dataset obtained from EN-
SEMBL [8]. We measured the elapsed time for each pro-
gramme for different combinations of input parameters. Al-
though a direct comparison between the MPI-based version
of MoTeX and RISOTTO is unfair, we believe that it is criti-
cal as it highlights the fact that real full-length datasets can-
not be processed by current state-of-the-art tools for motif
extraction in a reasonable amount of time. In other words,
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the time-to-solution is an important property. As depicted
in Fig. 3, the performance of MoTeX is completely indepen-

dent of the aforementioned input parameters.

The MPI-

based version of MoTeX with 1056 processors (-np 1056) fin-
ishes the assignment in a reasonable amount of time (69
mins), as opposed to RISOTTO, which requires more than
two months.

As a last test, we evaluated the parallel efficiency of the
MPI-based version of MoTeX, for the repeated motifs prob-
lem under the edit distance model. We used DNA sequences
of the single chromosome of Escherichia coli str. K-12 sub-
str. MG1655, obtained from GenBank [12] as input. Exper-
imental results regarding the elapsed time of MoTeX for dif-
ferent problem sizes are provided in Fig. 4a. The measured
relative speed-up of MoTeX is illustrated in Fig. 4b. The rel-
ative speed-up was calculated as the ratio of the runtime of
the parallel algorithm on 1 processor to the runtime of the
parallel algorithm on p processors—the runtime of the par-
allel algorithm on 1 processor was identical to the sequential
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one. The results highlight the good scalability of MoTeX, even
for small problem sizes. When increasing the problem size,
MoTeX achieves linear speed-ups, confirming our theoretical
findings.

7. FINAL REMARKS

In this article, we introduced MoTeX, the first word-based
HPC tool for MoTif eXtraction from large-scale datasets.
MoTeX considers the repeated motifs problem and the com-
mon motifs problem for strictly valid motifs. A valid motif
is strictly valid iff it occurs exactly, at least once, in (any of)
the input sequence(s). By making this stricter assumption
for motif validity, we showed how both the repeated mo-
tifs problem and the common motifs problem can be solved
directly and efficiently using algorithms for fixed-length ap-
proximate string matching.

The runtime of MoTeX does not depend on (i) the length
for motifs, (ii) the size of the alphabet, or (iii) the maximal
allowed distance. Given the stricter assumption on motif
validity, it is guaranteed to find globally optimal solutions.
Furthermore, the size of the output is linear with respect to
the size of the input. In addition, it can identify motifs under
the edit distance model or the Hamming distance model.
Finally, MoTeX also comes in two HPC flavors: the OpenMP-
based version and the MPI-based version.

Suffix-tree-based motif extractors produce globally opti-
mal solutions but exhibit many disadvantages. We demon-
strated that MoTeX can alleviate these shortcomings for mo-
tif extraction from large-scale datasets. For instance, we
showed how the quadratic time complexity of MoTeX can be
slashed, in theory and in practice, by using parallel compu-
tations. The extensive experimental results presented are
promising, both in terms of accuracy under statistical mea-
sures of significance as well as efficiency; a fact that suggests
that further research and development of MoTeX is desirable.

The stricter assumption for motif validity trivially sug-
gests that MoTeX is not the best solution in the case where
the input dataset is rather small. Consider, for instance, the
case when X is the DNA alphabet and k := 10. If the total
size of the input sequences is only a few KB, MoTeX might
not be able to extract all statistically significant motifs, since
some of them might be valid but not strictly valid. The best
solution, in this case, will most probably be an exhaustive
enumeration.

Our main goal is to accurately detect motifs over a mas-
sive set of biological sequences. We are especially interested
in discovering transcription factor binding sites whose con-
servation is decreasing as the evolutionary distance between
species increases. We plan to employ our motif extraction
algorithm in a phylogenetic framework to incorporate evo-
lutionary information in the motif extraction process. In
addition, extending MoTeX to be able to extract not only
simple but also structured motifs is already under way.
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