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Abstract

The  animal  gut  is  considered  to  be  one  of  the  most  densely  populated  by  microorganisms
ecosystem. All this microbial weight, vital for host's health and homeostasis, has been co-evolving
along with the gut structure, for millions years now. Recent studies on human gut microbiome have
already demonstrated the genetic repertoire of this community and highlighted its genetic variation
among individuals, not only in health states but also in various disease conditions. However, the
evolutionary  processes  that  drive  the  genetic  diversity  of  the  gut  microbiome  have  not  been
thoroughly investigated. Here, we use metagenomic datasets from stool samples of 39 healthy US
individuals to construct the genomic variation landscape of the most abundant bacterial species in
the human gut. Our main goals are, the detection of events of strong positive selection, based on the
site  frequency spectrum (SFS)  and the  inference  of  a  demographic  model  for  each  one of  the
bacterial species comprising the metagenomic sample. To infer the demographic scenarios we use
an  approximate  computation  bayesian  technique  based  on  coalescent  simulations,  taking  into
account the SFS. We find that the abundance or even presence of previously reported as highly
abundant  gut  species  varies  among the  individuals  in  our  cohort.  We report  the  most  possible
demographic  scenarios  for  each  bacterial  strains,  which,  for  most  of  the  bacteria,  comprises  a
recent, sharp population size decline. Furthermore, we report our findings on the detection of strong
positive  selection.  Finally,,  we  report  a  plethora  of  difficulties  in  the  estimation  of  SFS  from
metagenomic samples,  such as  the method for  estimating  allele  frequencies  from datasets  with
missing observations.

Introduction

Billions of years now microorganisms are dominating the Earth. It seems that the size does not
matter as microbes seem to be the pillars that support the edifice of life. From regulating the global
carbon cycle to the tremendous impact of their symbiosis on plant and animal health, they are the
key  players  of  the  biosphere.  The  total  ecological  diversity  of  microbes  that  occupy  a  certain
ecosystem is termed the microbiome. Our anthropocentric perspective of microbial world for many
decades made us believe that microbes are enemies. That is a half-truth, because in reality, they are
our best ally in the battlefield, despite that in many cases they can prove to be pathogenic. Indeed,
we are super-organisms comprising of a small cohort of human cells and a quite larger cohort of
symbiotic microbial cells. The microbial cells in our body (1013–1014) is estimated to outnumber the
human cells by a factor of ten and contain at least  100 times as many genes (105) as our own
genome1. The diversity and abundance of microbes is distinct for the different body habitats and
each  habitat  is  characterized  by  one  or  a  few  signature  taxa  making  up  the  plurality  of  the
community and within-individual variation over time is consistently lower than between individuals
variation. The uniqueness of each individual's microbial community thus appears to be stable over



time2.

The human gut microbiota

The gut  microbiota  represents the most densely populated and diverse ecosystem on Earth and
reaches  its  highest  cell  concentration  in  the  colon,  with  a  density  of  1012 CFU/g  of  intestinal
content3.  Initial  postnatal  microbial  exposure occurs during and shortly after the birth,  with the
mother's vaginal and fecal microbiomes serving as the most important sources4. The phylogenetic
diversity of the infant's gut microbiome increases gradually over time. It also demonstrates discrete
steps of bacterial succession driven by life events such as nutritional stages (e.g weaning, table
food) and antibiotic treatments. However, upon the third year, the gut microbiota becomes relatively
stable in terms of taxa composition, a phenomenon that persists during the adult life5 . It is known
that over 1,000 bacterial species colonize the human gut, with the vast majority belonging to the
phyla of Firmicutes and Bacteroidetes (90%), while Actinobacteria Proteobacteria,  Fusobacteria,
Cyanobacteria  and  Verrucomicrobia  being  less  well  represented6.  The  stability  in  composition
reported by research studies, heavily depends on the phylogenetic resolution and the density of time
series experiments and despite a core microbiome that is stable over time, it seems that a portion of
it fluctuates throughout life7. Interestingly, when samples from two different colons, were compared
to samples from different sampling sites on one individual, the differences were greater8. A recent
metagenomic study of the genomic variation in the gut microbiome, demonstrated that although
there are changes in species abundances, genomic variability similarity tends to be high for the
same individual over the time period of a year and might serve as a fingerprint of an individual. The
same study, using metagenomic samples from stool of 207 US individuals, identified 10,3 millions
SNPs in 101 gut species and reported that i) up to 99% of the metagenomic reads was mapped to 66
gut bacterial species. The same study also proposed that ii) host conditions (such as diet, genetic
differences, and immune tolerance) have a minor influence on the evolution of species compared to
constraints common to the human population (such as gut physiology, anaerobic conditions and pH)
and that iii) the source of variation in human gut microbial populations is less likely to be new
mutations withing the host than the variation in the initial colonizing populations or transmissions
from the environment9. 

Alumni for symbiosis

The  importance  of  symbiosis  with  microbes  can  be  easily  demonstrated  by  four  fundamental
processes, crucial for human health, that are maintained and regulated by this interaction; (i) the
metabolism of complex polysaccharides10, (ii) the production of vitamins and amino-acids6, (iii) the
training of the immune system11 and (iv) brain development and functions12-14.

The human genome is capable of fully degrading a small subset of glycans – namely starch, lactose
and sucrose. However, the dietary glycans that enter the gut are exceptionally diverse. Gut bacteria,
however, have accumulated a huge variety of carbohydrate active enzymes (CAZymes) in their



genomes that enable the efficient digestion of almost all plant and animal derived polysaccharides.
The final  metabolites  of  this  fermentation process are  mainly short-chain fatty  acids  (SCFAs –
acetate, propionate, butyrate). Acetate and propionate are absorbed into the bloodstream and travel
to the liver, where they are incorporated into lipid and glucose metabolism respectively, whereas
butyrate represents the main energetic substrate for the colonic epithelial cells. These acids have
been shown to play a pivotal  role  in host nutrition and energy homeostasis,  controlling energy
production, and storage as well as the appetite. Perturbations in the production of these metabolites
have been associated with a couple of diseases, such as colorectal cancer and obesity15,16. Except for
the diet derived polysaccharides, gut bacteria have evolved to metabolize very complex and diverse
endogenous host glycans secreted by mucus10. They can also digest a mixture of complex human
milk oligosaccharides  (HMO) that  are  abundant  in the breast  milk of  humans but  not of other
mammals.  Most  HMOs cannot  be  digested  by human enzymes,  suggesting that  they  guide the
development of the infant gut microbiota, selectively feeding specific species17-19.

There is an continuous interplay between the commensal gut microbes and our immune system. The
gut  microbiota  are  required  for  the  normal  generation  and/or  maturation  of  GALTs,  immune
structures in which antigens can be taken up and presented by antigen-presenting cells, serving as
the key for tolerance or inflammation. IgA has been also shown to affect and be affected by the
composition  of  gut  microbiota10.  IgA is  an  immunoglobulin  produced  in  the  mucosal  tissues,
including the intestine,  and coats commensal bacteria  or other  soluble antigens,  inhibiting their
binding  to  the  host  epithelium20.  There  is  also  evidence  that  gut  microbiota  promote  the
development of TH17 cells, a type of T cells that preferentially accumulates in the intestine and have
a role in the development of autoimmune diseases21. Additionally, many studies have reported that
commensal bacteria can inhibit pathogen colonization. There are many proposed mechanisms by
which they accomplish it. The successful competition with other pathogens for the limited supply of
nutrients in the intestine, the promotion of mucus production and the stimulation of production of
antimicrobial substances from epithelial cells are thought to be the main mechanisms10.

A prominent role for the gut microbiota has been proposed for the gut-brain interactions, too. Based
on studies using germ-free animals, the gut microbiota appears to influence the development of
emotional behavior, stress and pain modulation systems, and brain neurotransmitter systems. This is
also shown by experiments of antibiotic and probiotic treatment of animals22-23. Current evidence
suggests that multiple mechanisms, including endocrine and neurocrine pathways, may be involved
in gut microbiota-to-brain signaling14. However, it is long been known that the brain can in turn
alter  microbial  composition  and behavior  via  the  autonomous nervous system24.  Microbes  may
benefit  from communicating with the brain.  Maybe they need us to be social,  so that they can
spread through the human population.

The mutualistic relationship between gut microbes and humans is based on the fact that we have
access to a variety of food sources that we cannot digest and directly utilize as energy source. This
variability in food sources is a consequence both of the mobility that characterizes human lifestyle,



and the fluctuations in food availability due to insufficient supplies or seasonal restrictions. From
the other hand, microbes that hijack the human intestinal bus, advantage from this diversity in our
diet  and  thrive  in  the  gut  with  the  constraint  to  provide  us  with  nutrients.  Thus,  the  human
microbiome must have been evolved to retain a degree of plasticity so that it can easily respond to
perturbations in food sources. It has been shown recently, that plant-based or animal-based diets
promote changes the gut microbiota composition and these adaptations to diet can be detected in 1-
3  days25,26.  A molecular  study  of  diet-dependent  microbiota  dynamics  in  14  overweight  men
revealed that the individual microbiota adapts its phylogenetic profile in response to the main types
of  fermentable  carbohydrates.  Interestingly,  this  study  revealed  subject-specific  diet  dependent
changes in the microbiota phylotypes27. The most likely mechanism, that promotes carbohydrate
active  enzymes  update  in  the  GIT  microbiome,  is  the  consumption  of  foods  containing
environmental  bacteria28.  It  is  rational to expect  that  there are also other factors that  affect  the
configuration of gut microbiota, such as exposure to environmental bacteria and host genetics. All
these combined, could result in country-related distinct microbiota profiles considering the different
lifestyles, dietary habits and climates of each country. Gut microbiomes sampled from people from
Japan,  China,  Korea  and  USA  revealed  profiles  clustered  according  to  geographic  origin29.
Analogously,  a  comparative  study  between  children  from  Europe  and  Burkina  Faso  showed
significant country-related differences in the fecal microbiota community30.

The advent of agricultural societies with the transition from hunting and gathering to agriculture and
permanent settlements almost 10,000 years ago must have favored the greatest  changes for gut
microbial  communities.  However,  as  the  investigation  of  fossils  has  a  lot  of  constraints,  other
approaches that could shed light in the evolutionary trajectories of the human gut microbiota are
being adopted.  One of  them was  recently  introduced by a  research  group that  studied  the  gut
microbiota of the Hadza race in Tanzania. The people of this race still live as Paleolithic humans. In
other  words,  they  are  a  modern  population  of  hunter-gatherers.  The  Hadza  gut  microbiota  is
reflecting a functional adaptation to a foraging lifestyle. High bacterial diversity and enrichment of
fibrolytic microorganisms seems to be the response to a heavy plant-based diet. Furthermore, the
Hadza showed a sex-related divergence in the GM reflecting the sexual division in labor and diet
composition. Finally, the absence of Bifidobacterium and the enrichment of potential opportunists,
such  as  Proteobacteria  and  Spirochaetes,  probably  demonstrates  a  different  tolerance  of  their
immune  system,  redefining  the  notion  of  what  we  consider  a  healthy  and  an  unhealthy  gut
microbiome structure31. 

NGS based approaches for the study of gut microbiota.

Over the past ten years, the rapid development of next generation sequencing (NGS) technologies
increased  the  number  of  bases  sequenced  per  run  and  reduced  the  sequencing  costs.  These
technological advances drove the development of the novel field of metagenomics. Metagenomics
involves  the  study  of  the  genomes  of  many  organisms  simultaneously  and  is  a  revolutionary
approach in studying complex ecosystems, combining the power of genomics, bioinformatics and
systems  biology.  Thus,  provides  new  access  to  the  microbial  world,  considering  that  the  vast
majority of microbes in nature cannot be grown in the laboratory and be studied with the classical



methods of microbiology. Metagenomics overcomes the problems of unculturability and genomic
diversity of most microbes.

There are three main NGS strategies which can be used for metagenomics; shotgun sequencing,
gene targeted sequencing and metatrascriptomics. Shotgun sequencing is the analysis of the entire
microbial community. It is based on the extraction of genomic DNA directly from an environmental
sample for the preparation of a NGS library. However, it is important to recognize that the library is
not organized in volumes containing the genome of one community member. Instead it consists of
millions  of  clones,  each  holding  a  random  fragment  of  DNA.  A metagenomic  library  is  like
thousands of jigsaw puzzles mixed into a single box. Putting the puzzles together again is a great
challenge. The correct assignment of reads into genomes is determined either by mapping the reads
in  already  available  reference  databases  or  by  de  novo assembly  of  the  reads  into  genomes.
However, each approach has its own constraints. Targeted sequencing of specific genes enables the
study of microbiomes in a more cost-efficient way. In most cases, the 16S rRNA gene is targeted, as
it  possesses highly conserved regions  spaced by hyper-variable regions  and can provide a high
resolution phylogenetic profile of the community. Using universal primers to amplify the selected
locus  in  a  PCR reaction and then sequence the amplified DNA fragments,  its  easy and fast  to
perform.  However  PCR  biases  can  produce  ambiguous  results32.  Additionally,  recent  studies
demonstrate  that,  especially  for  metagenomic  species  profiling,  the  use  of  many  phylogenetic
markers is essential33. Last but not least, analyzing the entire transcriptome of an environmental site
can give a comprehensive view of the community's expression profile, vital for the assessment of
different biological processes that characterize the community. 

Population genetics and evolution of bacterial species

Although, natural selection operates at the level of the phenotype, its molecular signatures can be
revealed, inspecting a population’s genetic variation landscape. In general, when a beneficial allele
arise in a population, it tends to increase its frequency within it, reaching fixation at some point if
the selective force is strong enough. Conversely, a deleterious allele decreases in frequency till it
vanishes from the population. However, in both scenarios, a selected locus can also determine the
frequencies  of  linked  but  neutral  neighboring  loci,  a  phenomenon  described  as  genetic
hitchhiking34,35.  As a result,  neutral variants can be dragged to fixation or get lost  along with a
selected allele, unless recombination breaks down this association. By this means, genetic variation
near a positively selected mutation can be greatly reduced, a process known as selective sweep36.
The extent  of a  chromosomal region affected by a selective sweep depends on the strength of
selection and the local recombination rate, as regions that are distant from the selected site regaining
the lost genetic variation due to recombination37. Besides, without the effect of recombination all the
genetic variation would be lost along with the fixation event. 

There is a number of different approaches that can detect the footprint of positive selection on the
genome. Some of them are based on the comparison of genetic change between different species
and usually are used to detect selection events happened deep in the past (e.g. McDonald-Kreitman
test, HKA test, dN/dS, Lewontin-Krakauer test)38-41, while others investigate selective events within
populations and can infer recent activity of selection. For the detection of positive selection in a



population,  two  main  strategies  have  been  developed.  The  first  strategy  is  based  on  linkage
disequilibrium  (LD)  patterns  in  the  neighborhood  of  the  beneficial  mutation42 and  the  second
strategy  is  based on the skewing of  the allele  frequencies  (e.g Tajima’s  D)43.  LD patterns  are
generated  since  independent  recombination  events  on  either  sides  of  the  selected  allele  breaks
associations between alleles that are located on different sides of the selective sweeps. However,
SNPs on the same side still remain partially associated and thus show high levels of LD.  The skew
of the allelic frequencies occurs since neutral alleles hitchhike with the beneficial allele. Due to
recombination however the hitchhiking stops before they reach fixation. Thus, they if they hitchhike
they remain in high frequency; if they are not hitchhikers initially, then their frequency decreases.
Common to all of these methods, is the use of summary statistics in order to compare the observed
data with a null hypothesis of neutrality44. Expectations under the null hypothesis can be defined by
simulations of a population model that assumes no selection. Under a standard neutral model, the
population  is  reproducing  by  random  mating,  the  population’s  size  is  constant,  there  is  no
population subdivision neither generation overlap. In addition, neutrality can be described by even
more complicated models and in some cases, empirical estimates of parameters may be available
and can be incorporated in the model. 

As already mentioned, selective sweeps can alter the frequencies of linked neutral alleles in the
population. The distribution of allele frequencies is descibed by the site frequency spectrum (SFS).
Thus,  skewing of the alleles distribution can be demonstrated in  the so called shift  of the site
frequency spectrum. The SFS is a count of the number of mutations that exist in a frequency of x i =
i/n for i=1, 2, ... , n−1, in a sample of size n. Under the standard neutral model, the expected value
of xi  is proportional to 1/i  45. In contrast, in case of a selective sweep an excess of low and high
frequency derived alleles is observed. However, similar patterns of genetic variation produced by
genetic  hitchhiking,  can  be  also  produced  by  demographic  events.  For  example,  population
bottlenecks or expansions may result  in an excess of low frequency alleles and many different
demographic scenarios are capable for the increase of high frequency alleles as well46.  Thus, a
reliable demographic model could help distinguish the origin of these molecular signatures.

Recently,  advances  in  sequencing  technology  enabled  for  population  genomics.  Therefore,  the
development of computational tools that can detect positive selection while exploiting the genetic
variation patterns across the whole genome was more than a necessity. Kim and Stephan47 proposed
a method that uses composite likelihood ratio (CLR) test, to evaluate the probability of a selective
event being responsible for a surplus of derived alleles. Specifically, this test compares the ratio of
the composite likelihood of the data under a neutral model against an alternative hypothesis of a
complete  selective sweep. This statistical  test  modified has been implemented in computational
tools that enable for the detection of sweeps in whole-genome data48,49. One important advantage of
these tools is that they can either obtain the model for neutrality from the empirical SFS of the
entire  data  (average  SFS  for  all  SNPs)  or  assume  a  user-defined  demographic  model  for  the
estimation of SFS. The notion behind is that while the selection’s signature is localized around the
selected site, demography affects the whole genome and outliers derived from the test procedure are
likely sites that a selective sweep has occurred. 

In bacteria, patterns of genetic variation depend on the extent to which populations behave clonally.
For example in a clonal population every adaptive allele that arises will be perfectly linked to every



other allele in the genome. In contrast with eukaryotes, recombination of homologous DNA occurs
by gene conversion rather than crossing-over and recombination is decoupled from reproduction.
Thus, linkage between nearby loci is expected to be higher than linkage between distant loci in
relation to sexually recombining genomes50. Distinguishing adaptive mutations within a population
depends on the balance between the opposing forces of positive selection, that purges diversity as a
new allele  approaches  fixation  and recombination  that  maintains  diversity  by unlinking distant
regions of the genome from a selective sweep. This balance can be demonstrated by the probability
that a polymorphism has arisen due to mutation or recombination. The r:m ratio varies considerably
among bacteria but is larger than 1, suggesting that recombination is strong in relation to mutation
in many species51. On the other hand, the mutation rate is universally low in bacteria (10-10 per site
per generation)52.

In this work, we detect selective sweeps in the 66 most abundant bacterial genomes in the human
gut analysing metagenomic datasets of 39 healthy individuals. We adopt an SFS-based method for
sweep detection implemented by SweeD. Additionally, we infer demographic scenarios for each of
these bacteria populations, exploiting the genome’s estimated SFS, by coalescent simulations with
fastsimcoal253,54.

Methods

Data
All 39 samples used in our analysis, were metagenomic shotgun sequencing data, derived from stool of US
healthy  individuals,  both  men  and  women,  in  the  context  of  the  Human  Microbiome  Project
(http://www.hmpdacc.org/HMASM/).  Biological  samples  were  initially  sequenced  by  Illumina  WGS
plattform and preprocessed by the Human Microbiome Project Consoritum in a way that all human reads
were  masked,  all  duplicate  reads  were  removed  and  low quality  bases  were  trimmed in  all  reads.  All
reference genomes were downloaded from the ftp server of NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/). For
the phylogenetic analysis, we used 16S rRNA sequences derived from stool samples, as part of  the HMP. 

Data links: , 

Construction of a genomic variation database for human gut microbiome
Metagenomic shotgun sequencing reads from 40 HMP samples were mapped in 66 bacterial genomes of the
human  gut  micriobiome,  using  Mosaik  aligner in  a  way  that  information  of  genomic  diversity  can  be
retained, with the parameters:  -a all -m all -hs 15 -mmp 0.95 -mmal -minp 0.9 -mhp 100 -act 20. All genomes
downloaded from NCBI ftp  server   and labeled with a  unique tag (BACT_01-BACT66).  We created a
micriobiome fasta  file  containing  all  bacterial  genomes,  that  we  used as  reference.  Only  mapped reads
retained with samtools and sorted by coordinates with  Picard’s SortSam. All duplicates were marked with
Picard’s MarkDuplicate tool and indexes of bam files were created with Picard’s BuildBamIndex. 

ftp://ftp.ncbi.nlm.nih.gov/genomes/
http://www.hmpdacc.org/HMASM/


For SNPs identification we used tools from the GATK platform. After preparing bam and reference files to be
compatible with  GATK we locally realigned mapped reads, such that the number of mismatching bases is
minimized across all the reads, using RealignerTargetCreator and IntelRealigner. Local realignment serves
to transform regions with misalignments due to indels into clean reads containing a consensus indel suitable
for standard variant discovery approaches. Unlike most mappers, this process uses the full alignment context
to determine whether an appropriate alternate reference (i.e. indel) exists. We omitted the base recalibration
step, proposed by  GATK best practices, as the new estimations for base qualities drastically reduced the
number of reads passing the default thresholds for base quality. We suspect that this reduction is due to the
absence of a database of known polymorphic sites for our reference genomes. Variant calling was performed
with  HaplotypeCaller, independently for each sample with the parameters:  -ERC GVCF –variant_index_type

LINEAR --variant_index_parameter  128000 -ploidy 1 -mbq 20. This program determines regions of increased
variation and builds a De Bruijn-like graph to reassemble the region. Identifying all possible haplotypes in
the region, then performs a Smith-Waterman alignment to identify variant sites. In the end, it performs a
pairwise alignment of each read against  each haplotype using the PairHMM algorithm. This produces a
matrix of likelihoods of haplotypes given the read data. These likelihoods are then marginalized to obtain the
likelihoods of alleles for each potentially variant site given the read data. The most likely genotype is then
assigned  to  the  sample.  All  genotypeGVCF  records  produced  from  variant  discovery  for  each  sample
separately, were merged into one file, in a way that all possible genotypes found in the cohort for a given site
were retained,  using GenotypeGVCFs with the parameters: -ploidy 1 -stand_call_conf 30 -stand_emit_conf
10. SNPs extracted with SelectVariants tool.

Estimation of abundances
Following mapping of the metagenomic reads for all  samples to reference genomes,  we estimated each
genome coverage,  both in  depth and breadth terms.  We converted  bam into  gencov files with  bedtools
genomecov. Necessary for this conversion was each genome’s/contig’s length in bps. Lengths were obtained
from the  respective  bam files  with  a  custom  script  (getgenomelengths.sh).  We  then  estimated  genome
abundances from the genomecov file. Abundances were estimated counting the coverage for each genomic
site normalized with the length of the genome and the total number of mapped reads for each sample. We
also estimated the percentage of sites that were not covered by a sequencing read for each genome (breadth
of coverage). Abundances were estimated with a custom python script (AbudanceCounter.py)

Estimation of present genomes in samples

In order to determine the presence or absence of a genome in each biological sample (microbiome), we

pooled  all  breadth  of  coverage measurements  and then  performed a  cluster  analysis.  We used  k-means
algorithm,  implemented  by  an  R  package,  aiming  to  cluster  our  data  into  two  groups,  one  group
representative of the present genomes and one for the absent genomes. Thus, we set as threshold for presence
in a sample, the mean of the minimum value from the cluster with the higher mean value and the maximum
value from the cluster with the lower mean value (m=0.545).



Phylogenetic analysis
Phylogenetic analysis was performed with RAxML, a maximum likelihood based algorithm for phylogenetic
inference. As input we used 16S rRNA  fasta sequences from the reference database of HMP.  RaxML was

called with the parameters below: -m GTRGAMMA -p 9384503, where -m specifies the mutation model (here
GTR; generalized  time reverse  mutation  model  with  Gamma parameter  estimation  for  the  rate
heterogeneity).

Inference of positive selection
All identified SNPs for each bacterial genome in our cohort of individuals were separated and used as input
to SweeD for the detection of selective sweeps. Data files were converted to the SweepFinder format (SF)
which comprises  four  columns (SNP position,  number  of  derived alleles,  number  of  sequences,  and an
indication flag whether  the SNP is folded or  not).  Importantly,  all  genomes found to be absent  from a
biological sample were not included in our analysis. One SF file was created for all contigs of each genome
from which we estimated the entire genome’s SFS. This SFS was used downstream in the CLR test step.

Inference of demography
We  used  fastsimcoal2,  a  coalescent  simulation  program,  to  estimate  demographic  parameters  for  each
bacterial  population,  based on the SFS estimated for  each genome.  In short,  fastsimcoal2 simulates the
expected SFS under a given set of parameters and computes their (composite) likelihood. Fastsimcoal2 uses
a robust maximization procedure to find those parameters maximizing the composite likelihood. Three type
of files were required as input: i) a file containing the observed SFS; ii) a template file (.tpl) in which the
evolutionary model to be studied is specified, defining the parameters of interest; iii) an estimation file (.est)
in which the parameters’ prior distributions are defined. We created all files required as input for the program
with a custom python script. (SFS_ALL_2_obs.py)

Software links
SweeD 

https://www.assembla.com/spaces/sweed/git/source

Fastsimcoal2

http://cmpg.unibe.ch/software/fastsimcoal2/

http://cmpg.unibe.ch/software/fastsimcoal2/
https://www.assembla.com/spaces/sweed/git/source


Results

Analysis of microbiota composition in our cohort

Mapping  metagenomic  reads  in  reference  genomes  may  be  one  of  the  greatest  challenges  in
metagenomic analysis. First, without having an a priori knowledge of the genomes composition in a
biological sample, we can only speculate arbitrarily the existence of some selected genomes in it.
Second, a metagenomic read can be mapped more than one time in more than one genomes, despite
the fact that originates from one genetic locus. At first,  we determined the abundances of each
bacterial  genome  in  the  microbiome  of  each  individual.  We  found  that  bacterial  genomes  are
divided  into  three  groups,  according  to  their  abundance.  One  in  which  genomes  are  abundant
across  all  individuals,  one  in  which  they  are  sparse  and  one  in  which  are  abundant  in  some
individuals selectively (Fig.1). However, the number of reads that are mapped in a genome is not
alone necessary and sufficient condition that this genome is present in a sample. There might be
some highly conserved regions that can accumulate metagenomic reads even if these reads originate
from other genomes in the sample.  As a consequence,  we also estimated the percentage of the
genome that is covered by at least on read, for all genomes included in our analysis. This estimation
served as indicator of the presence or absence of a genome in a given microbiome. Clustering
analysis pointed out that at least 54,5% of a genome should be covered for a species to be assumed
as present in the sample (Fig.2a,b). We discovered many species of the phylum Bacteroidetes, such
as  Bacteroides vulgatus,  Bacteroides ovatus,  Bacteroides sp. 1 1 6,  Bacteroides uniformis, to be
present in almost all  microbiomes in our cohort. Conversely, species Blautia hansenii, Clostridium
sp. M62-1, Eubacterium cylindroides, Holdemania filiformis and Prevotella timonensis were found
to be absent in all cases. In addition, some Clostridium species as well as Bacteroides were present
only in a few individuals. Surprisingly, E. coli IAI39 strain, a very famous gut microbe, was present
in only 6 samples. In general, we ascertained that the existence of a species in our cohort  ranged,
with the number of samples in which reported as present,  covering almost all possible values from
0 to 39. Counts of samples in that a species was assumed to be present are demonstrated in Fig.2c.
All genomes found to be absent in a given sample were not included in the downstream analysis.



Figure 1 Heatmap of abundances of  66 bacterial genomes, previously reported as themost abundant in the human gut, among a cohort of
39 healthy individuals. The y axis corresponds to different bacterial species and x axis to different metagenomic samples. Abundances
values are in log scale. Light yellow shades denote high abundance values, while dark red shades denote low abundance values.



Phylogenetically close species tend to have more similar genomes. This implies that a large portion
of metagenomic reads that originate from one species can be also mapped in a closely related one.
However, it is not clear up to which extend such a fashion exists for bacterial genomes, as there are
reported  cases  in  which  strains  of  the  same  species  share  less  than  40%  of  their  genome.
Furthermore,  there  is  mounting  evidence  that  taxonomic  units  broader  than  individual  species
indeed have ecological meaning and, thus, show similar patterns of selection. We constructed a
phylogenetic tree of the species included in our analysis, based on 16S rRNA sequences derived
from metagenomic stool samples, so that we can explore how phylogenetic distance contributes to
the mapping’s procedure “species artifacts” and if  selection patterns could recognized on a higher
taxonimic level. (Fig.3) 

Figure 2 Clustering of genomes according to the percentage of the genome that is covered by a metagenomic read (Breadth of
coverage). Breadth of coverage measurements across all metagenomic samples for a) species found to be present in the majority of
cases b) species found to be present in a few cases. Blue color indicates presence, green color indicates absence. Red bars show the
average of all measurements. c) The number of metagenomic samples in which a bacterial species estimated to be present.     



Genomic variation landscape of microbiomes

One of the main goals of this work was to detect selective sweeps in genomes of the most abundant
bacterial  species  of  the  human  gut.  Prerequisite  for  this  kind  of  analysis,  was  to  obtain
polymorphism data from our cohort  of individuals. Thus, we constructed the genomic variation
landscape  of  the  cohort’s  simplified  microbiomes.  A plethora  of  SNPs  was  identified  for  each
bacterial  species.  Overall,  approximately  11.1 millions  polymorphic  sites  were  detected  in  all
genomes.  Estimating  the  number  of  polymorphic  sites  across  genomes,  we distinguished some
genomes that  possess a relatively high percentage of polympophic sites.   On average,  4.6% of
genome found polymorphic.  Interestingly,  27% of  Dialister  invisus  genome was   polymorphic
across samples, while only few genomes outreach 10%.(Fig.4a).  We investigated how abundant
among the individuals were the sites in which we identified SNPs. Examples of the abundance
distribution  of  polymorphic  sites,  for  a  highly  polymorphic  and a  highly  abundant  species  are
demonstrated in Fig.4b. As we expected, the number of alleles in polymorphic sites was positively
correlated with the overall abundance of genome in the cohort. 

Figure 3 Phylogenetic distances of all 66 bacterial species based on the 16S rRNA sequence. Species in the leftmost group belong
to the Phylum Bacteroidetes. Counterclockwise, species belonging to phyla Firmicutes (two consecutive clusters),  Actinobacteria
and Proteobacteria are demonstrated. (Not all 66 species are shown in the figure)



Inference of positive selection
The  Site  Frequency  Spectrum  in  a  population  under  neutrality  derives  from  a  hyperbolic
distribution. As a consequence, the frequency of alleles in the empirical SFS estimated from an
entire genome, should be drawn from this kind of distribution.  We used  SweeD  to estimate the
empirical SFS for 56 commensal bacterial species of the human gut. (10 species were excluded due
to insufficient number of data). We observed different site frequency spectra across species. The
expected SFS as described above, was more common among highly abundant species, indicating an
impact of missing data in the estimation of SFS. Characteristic of the deviation from the expected
was an underestimation of the first class of polymorphisms (singletons). However, the number of
polymorphic sites used for the estimation, didn't seem to compensate for the effect of missing data,
as in the case of Dialister invisus that exhibited a huge number of polymorphic sites. Examples of
both expected and deviated SFSs are demonstrated in Fig.5. 

Figure 4 a) Percentage of polymorphic sites for all 66 genomes. Mean=4.6%. b) Distribution of the number of alleles in 
polymorphic sites. Upper plot: Distribution of alleles for Dialister invisus, species high percentage of polymorphic sites. Lower plot: 
Distribution of alleles for Bacteroides ovatus, highly abundant species.



Inference of demography
The inference of demographic parameters for each of the 56 bacterial populations was based on the
SFS estimates. We chose a demographic model that allows for one bottleneck event and one event
of  population's  expansion/shrinkage.  Demographic  parameters  that  maximized  the  composite
likelihood  of  SFS  shaped  the  exact  demographic  scenario  for  each  population.  In  fig6  are
summarized all  the inferred demographic parameters.  In general,  a  quite common demographic
scenario for many bacteria can be described as follows. Back in time, the population's size goes

 

Figure 5 Distribution of the empirical Site Frequency Spectrum derived from the entire genome of 3 gut commnesal bacterial
species.  SFS of Bacteroides uniformis, a highly abundant species, has the shape of  hyperbolic distribution, as expected. SFS of
Dialister invisus,  the species with the highest number of polymorphic sites reveals an underestimation of singletons.  The same
deviation from the expected distribution is obvious in SFS for Faecalibacterium prausnitzii, as well. Both species were abundant in a
few individuals in our cohort.  



through a bottleneck followed by an expansion that reaches a plateau. Finally, this plateau state is
followed by a second event of an ongoing slow reduction in the population size. More exhaustive
examination of the different demographic  scenarios will reveal more similarities and differences
between species history. 

Figure 6 Table summarizing the inferred demographic parameters  for  56 commensal  bacterial  species of the huma gut.  NCUR: current
population  size,  NANC:  ancestral  population  size,  NBOT:  population  size  after  bottlneck,  TBOT:  time  in  generations  since  bottlneck,
MUTRATE: mutational rate, GROWTHRATE: rate of populations growth. Positive values indicate population shrinkage(backwards in time),
RECRATE:  recombination  rate,  RESBOT:  ,  TENDBOT:  time  in  generation  since  the  start  of  bottleneck  event,  MaxEstLhood:  likelihood
estimated  from simulations based on SFS.  MaxObsLhood:  the  obtained likelihood by using the observed  SFS as  the  expected SFS when
computing the likelihood 

GENOMES NCUR NANC NBOT TBOT GROWTHRATE MUTRATE RECRATE RESBOT TENDBOT MaxEstLhood MaxObsLhood
Bacteroides_vulgatus_PC510 33373 29021 47536 135649 9.97033E-005 7.94663E-008 1.55932E-009 1.424385 135749 -794077.15 -783259.663
Bacteroides_ovatus_SD_CMC_3f 74077 27551 38386 168178 3.46369E-005 7.8284E-008 2.58153E-008 0.5181905 168278 -1768727.879 -1747305.852
Bacteroides_uniformis_ATCC_8492 48757 60555 74079 115909 3.04534E-005 9.58166E-008 2.54977E-009 1.5193511 116009 -707347.174 -706811.215
Alistipes_putredinis_DSM_17216 56627 39823 53083 88080 2.50675E-005 9.89358E-008 1.31043E-009 0.937415 88180 -354462.975 -353861.351
Prevotella_copri_DSM_18205 16978 62387 36298 114374 0.000256762 0.000000097 7.2156E-009 2.1379432 114474 -284831.276 -279613.506
Parabacteroides_merdae_ATCC_43184 110681 78847 39030 84588 9.75629E-006 9.68767E-008 8.79983E-010 0.3526351 84688 -730510.775 -715250.957
Bacteroides_coprocola_DSM_17136 9185 64962 48540 63163 0.000687966 6.75352E-008 4.26156E-008 5.2847033 63263 -127740.162 -123225.373
Bacteroides_sp._1_1_6 32928 45939 26851 168160 0.000100799 9.82269E-008 3.90234E-009 0.8154458 168260 -1679491.555 -1655887.429
Bacteroides_plebeius_DSM_17135 21502 34658 44300 161717 0.000171508 9.77526E-008 1.68756E-008 2.0602735 161817 -327454.47 -327445.23
Bacteroides_sp._2_1_16 16288 58529 25497 74516 0.000182792 9.76193E-008 1.69211E-008 1.5653856 74616 -451182.455 -445720.297
Parabacteroides_sp._D13 17595 44578 56405 100088 0.000140674 9.74758E-008 2.97333E-008 3.2057403 100188 -647556.329 -644505.41
Eubacterium_rectale_ATCC_33656 58625 42515 78502 121948 1.71441E-005 0.000000095 8.77057E-010 1.3390533 122048 -527523.249 -524696.659
Alistipes_shahii_WAL_8301 85120 44064 40351 156954 2.54312E-005 7.6828E-008 1.77479E-009 0.4740484 157054 -709483.322 -708087.15
Bacteroides_eggerthii_DSM_20697 16011 47715 69765 166584 0.000129458 0.000000096 1.40135E-010 4.3573168 166684 -928342.349 -875810.621
Bacteroides_coprophilus_DSM_18228 103733 12029 62027 6350 -6.28841E-006 4.02321E-008 1.65808E-009 0.5979486 6450 -7588.357 -7588.357
Ruminococcus_bromii_L2-63 139771 34700 65939 164853 4.15245E-006 7.68475E-008 1.31641E-009 0.4717645 164953 -393783.026 -387552.093
Bacteroides_cellulosilyticus_DSM_14838 39968 34811 70460 167954 0.000095124 7.55833E-008 4.87178E-010 1.7629103 168054 -1211385.24 -1182008.899
Faecalibacterium_prausnitzii_SL3/3 32455 33504 32684 168169 0.00010413 7.43442E-008 9.43733E-010 1.0070559 168269 -762580.777 -745391.618
Faecalibacterium_prausnitzii_A2-165 18483 24219 62450 168169 0.000172842 7.48772E-008 2.06504E-009 3.3787805 168269 -600147.327 -588288.07
Dialister_invisus_DSM_15470 42452 30715 82985 163217 5.26597E-005 7.46053E-008 2.45362E-008 1.954796 163317 -262862.352 -259701.506
Butyrivibrio_crossotus_DSM_2876 4763 52857 43428 14425 0.000860001 3.24125E-008 2.23825E-008 9.1177829 14525 -9060.706 -9046.201
Escherichia_coli_IAI39 4480 27717 20973 35633 0.0011072 2.56154E-008 1.13456E-008 4.6814732 35733 -43494.308 -39930.597
Faecalibacterium_prausnitzii_L2-6 16304 67861 52521 167111 0.000222868 7.25416E-008 1.16453E-008 3.2213567 167211 -746110.933 -730949.374
Roseburia_inulinivorans_DSM_16841 14878 46703 75815 127057 0.000215746 7.64636E-008 0.000000005 5.095779 127157 -484489.156 -474176.54
Eubacterium_eligens_ATCC_27750 51713 74180 62362 167695 0.000028782 0.000000096 5.84228E-010 1.205925 167795 -564217.761 -553803.789
Eubacterium_siraeum_70/3 22532 25888 57310 114818 0.000191453 7.77985E-008 1.40061E-009 2.5434937 114918 -332396.009 -331222.37
Roseburia_intestinalis_M50/1 13727 41612 30627 109606 0.00023946 7.54174E-008 8.56108E-010 2.2311503 109706 -453052.591 -441043.266
Ruminococcus_torques_ATCC_27756 4135 36634 64323 36626 0.000786463 7.76777E-008 1.93556E-009 15.5557437 36726 -110620.597 -106419.259
Ruminococcus_torques_L2-14 6963 43859 62130 82815 0.000445542 7.48194E-008 4.04368E-010 8.9228781 82915 -262277.335 -254645.879
Akkermansia_muciniphila_ATCC_BAA-835 191774 46190 56812 168165 -7.29516E-006 7.52963E-008 4.19573E-009 0.2962445 168265 -455181.36 -446817.093
Clostridium_sp._L2-50 8635 80834 62472 92239 0.00065284 0.000000099 5.18139E-008 7.2347423 92339 -227991.964 -217087.638
Coprococcus_comes_ATCC_27758 8616 13734 84678 82043 0.000362363 0.000000074 1.41205E-009 9.8279944 82143 -257124.45 -250558.284
Ruminococcus_sp._5_1_39BFAA 7281 60354 77982 85413 0.000472569 7.93874E-008 7.31152E-009 10.710342 85513 -366033.194 -349265.716
Bacteroides_pectinophilus_ATCC_43243 158736 43121 73196 15927 -1.16941E-005 7.24657E-008 1.56703E-009 0.4611178 16027 -20642.812 -20642.812
Eubacterium_ventriosum_ATCC_27560 6713 19019 32706 57680 0.000553309 9.81876E-008 7.37099E-009 4.8720393 57780 -231825.286 -218198.937
Dorea_longicatena_DSM_13814 6875 21308 78047 75474 0.000476584 7.62588E-008 1.92955E-008 11.3522909 75574 -209981.541 -196010.051
Dorea_formicigenerans_ATCC_27755 5667 112450 62461 69559 0.000529755 7.61738E-008 2.16765E-008 11.0218811 69659 -200477.48 -194134.406
Coprococcus_eutactus_ATCC_27759 10289 34993 33388 162089 0.000210327 9.91803E-008 1.46399E-008 3.245019 162189 -362745.617 -340952.882
Ruminococcus_lactaris_ATCC_29176 6762 48318 62831 59637 0.000526838 7.68305E-008 8.47761E-010 9.2917776 59737 -145249.269 -140693.048
Clostridium_sp._SS2/1 5412 57821 30420 58614 0.000715868 5.78464E-008 4.10149E-010 5.6208426 58714 -140357.828 -129755.933
Ruminococcus_obeum_ATCC_29174 5268 42019 35567 70859 0.000596846 9.71785E-008 4.50113E-010 6.7515186 70959 -306169.149 -277286.879
Ruminococcus_sp._SR1/5 6581 66481 43057 84586 0.000481242 0.000000075 2.56583E-010 6.5426227 84686 -243506.444 -230219.074
Coprococcus_catus_GD/7 3504 69348 37717 41592 0.000990948 9.95702E-008 0.000000012 10.763984 41692 -146340.445 -140604.87
butyrate-producing_bacterium_SS3/4 6810 83607 44705 82365 0.000501664 9.13189E-008 0.000000002 6.5646109 82465 -307938.178 -300247.148
Anaerotruncus_colihominis_DSM_17241 10226 20360 68046 17415 0.0012291 9.61624E-008 1.32566E-009 6.6542147 17515 -53405.365 -52933.625
Ruminococcus_obeum_A2-162 6614 45025 63044 80456 0.000468738 6.92104E-008 3.61374E-010 9.531902 80556 -191224.264 -180806.331
Eubacterium_hallii_DSM_3353 5957 25356 59735 71848 0.000621379 4.68743E-008 5.34402E-009 10.0276985 71948 -132715.049 -123951.45
Clostridium_leptum_DSM_753 7804 44621 68349 59357 0.000458336 7.52375E-008 3.18749E-009 8.7582009 59457 -175915.506 -170263.37
Bifidobacterium_adolescentis_L2-32 7169 64460 30597 47269 0.000595283 6.34421E-008 8.42816E-009 4.2679593 47369 -95886.822 -87965.732
Erysipelotrichaceae_bacterium_5_2_54FAA 10134 40982 29293 14495 0.000145873 3.70703E-008 0.000000043 2.8905664 14595 -11044.023 -11044.023
Collinsella_aerofaciens_ATCC_25986 17549 45064 25271 147520 0.000239137 0.000000078 2.35143E-008 1.4400251 147620 -350879.448 -326787.573
Bifidobacterium_longum_subsp._infantis_ATCC_55813 5817 26438 38065 30535 0.0011015 4.25309E-008 1.57311E-009 6.5437511 30635 -33911.502 -32103.884
Clostridium_bolteae_ATCC_BAA-613 49914 26750 23995 9880 -2.42919E-006 3.91063E-008 3.49006E-009 0.4807269 9980 -16634.735 -16634.735
Eubacterium_biforme_DSM_3989 5900 9572 30030 34422 0.000502801 6.45774E-008 4.11108E-010 5.0898305 34522 -26952.635 -25126.87
Ruminococcus_sp._18P13 261945 35390 66440 25091 -5.31755E-005 7.41607E-008 3.51625E-010 0.253641 25191 -26390.247 -26390.247
Catenibacterium_mitsuokai_DSM_15897 5529 6058 17239 82035 0.00065042 7.28996E-008 7.63313E-009 3.1179237 82135 -79672.484 -72250.614



Discussion

As already mentioned one of the biggest challenges in the science of metagenomics is the procedure
of assigning sequencing reads to practically unknown genomes of a biological sample. In our study,
we assumed as reference, 66 bacterial genomes previously reported as abundant in the human gut.
However, post-hoc analysis revealed that these genomes are not present in all 39 cases tested. This
indicates that a pipeline for metagenomic analysis  should examine for the presence of selected
reference genomes in a biological sample, after the assignment of reads from a metagenomic library
to  those references, so that misleading conclusions are avoided. Due to the nature of the project,
that is the analysis of the genetic variation, we didn’t go through a stringent way of alignment, not
to lose some important information regarding the genetic variation in a genetic locus.  An alignment
step implemented in a way that only uniquely mapped reads are retained could also validate the
presence of genomes but would then exclude all metagenomic reads with sequences shared by more
than one species. On the other hand, it is rational that an approach that allows a read to be mapped
several times in a library results in false positive hits. Indeed, inspection of the genome's coverage
distribution revealed genomic regions with  peaks of genome coverage.  (data not shown).  It  is
plausible that the existence of regions with shared variation could have an impact on our analysis.
Alternatively,  we  could  skip  all  those  regions  or  analyze  them  separately.  Nevertheless,
distinguishing  between  the  original  genetic  variation  of  a  genetic  locus  from  that  caused  by
mapping artifacts can be a very hard task. For this reason, we simplified things assigning to each
genomic site, the most prominent genotype for each sample.                

The ratio of non-synonymous to synonymous substitution rates has been widely used in genome-
wide scans for positive selection in bacteria, often providing evidence for function or gene specific
selection. Yet dN:dS is inappropriate when comparing either very distantly related strains (because

Figure 7: Illustration of the demographic model for the bacterium Bacteroides vulgatus. In the farthest past, 
the population size of the bacterium was comparable to the present-day population size. However, about 135k 
generations in the past there was a very steep increase of the population size, which then started to reduce 

exponentially until the present-day. 



dS becomes saturated with multiple  substitutions)  or  very closely related strains,  within which
dN:dS is inflated by segregating nonsynonymous polymorphism54. Here, we aimed to infer positive
selection based on the SFS derived from a “population” of metagenomic libraries. We estimated
SFS for 56 bacterial species of the human gut micriobiome. The estimation of SFS from datasets in
which part of the information is unknown raised some important concerns. First of all, in order to
estimate  the  allele  frequencies  for  each  polymorphic  site  in  the  dataset,  we have  as  input  two
observations; the number of derived alleles and the overall number of all alleles for this particular
site. However, for a dataset of N samples, the overall number of alleles n can be a number from 1 to
N. In cases that n < N, due to no reported alleles for some samples, we claim that the number of
derived alleles observed in our dataset could be different in a theoretical scenario that we had an
observation  for  all  N samples.  Thus,  we  estimate  the  number  of  derived  alleles  based  on  the
observation of derived alleles, the observation of overall number of alleles and the known number
of all samples, sampling  from a hypergeometric distribution. We have evidence that this estimation
procedure  has  some  biases  and  we  believe  that  such  biases  are  the  main  reason  for  the
underestimation  of  singletons  in  many  SFSs.  One  source  of  bias  is  the  fact  that  analyzing
polymorphic data, all observations of no derived alleles are excluded from the estimation of SFS,
because they are in principal non-polymorphic sites. As a result, the assumption that  missing data
can be drawn from a hypergeometric distribution is  wrong. On the contrary,  the distribution of
missing  data  is  unknown.  Thus,  the  way  that  the  missing  observations  are  handled  must  be
reevaluated.

Last but not least, we assume that all individuals in our cohort are not related to each other. In other
words, we claim that the rate of transmission of a bacterial strain from one individual to another is
negligible.  We also  don't  take  into  account  horizontal  gene  transfer  between same or  different
species, a phenomenon quite common for bacteria. Accounting for HGT may have a great impact
on the estimation of SFS under neutrality. HGT can be modeled as a gene conversion event and has
already been mathematically incorporated in coalescent theory55.
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