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Abstract

Intra-protein residual vicinities depend on the involved amino acids. Energetically

favorable vicinities (or interactions) have been preserved during evolution, while

unfavorable vicinities have been eliminated. We describe, statistically, the interac-

tions between amino acids using resolved protein structures. Based on the frequency

of amino acid interactions, we have devised an amino acid substitution model that

implements the following idea: amino acids that have similar neighbors in the protein

tertiary structure can replace each other, while substitution is more difficult between

amino acids that prefer different spatial neighbors. Using known tertiary structures

for α-helical membrane (HM) proteins, we build evolutionary substitution matrices.

We constructed maximum likelihood phylogenies using our amino acid substitution

matrices and compared them to widely-used methods. Our results suggest that

amino acid substitutions are associated with the spatial neighborhoods of amino acid

residuals, providing, therefore, insights into the amino acid substitution process.
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1 | INTRODUCTION

Structure and functionality of a protein are closely related.1 Its amino

acid sequence as well as cofactors, ligands, and other parts of the

same or other proteins form a complex network of interactions that is

the basis of the unique physicochemical properties of each protein

related to its function.1 During the last decade, a multitude of tertiary

protein structures have been determined by using techniques such as

crystallography, NMR, electron microscopy, and hybrid methods.2

Consequently, the number of the available tertiary structures in the

RCSB-PDB database3 amino acid is rapidly increasing.

Computational methods facilitate structural, functional, and evo-

lutionary characterization of the proteins.4 Protein function is tightly

linked to its tertiary structure, and consequently to the vicinities, or

interactions, amino acid residues have formed. For example, globular

and membrane proteins are characterized by totally different physico-

chemical environments. Membrane proteins show a limited interac-

tion with water molecules, and they are able to interact with the lipid

bilayer. Thus, their transmembrane region adopts a single type of

secondary structure—either a helix or a beta-sheet. Largely, the sec-

ondary structure is defined by non-neighboring (on the sequence

level) amino acid residue interactions.4

Recently, we developed PrInS (freely available from http://pop-gen.

eu/wordpress/software/prins-protein-residues-interaction-statistics

(Protein Interaction Statistics; Pavlidis et al. unpublished) an open-

source software to score proteins based on the frequency of their resi-

due interactions. PrInS uses protein structures stored in Protein Data

Bank (PDB) to construct a statistical model of intraprotein amino acid

residue interactions for a certain class of proteins (e.g., membrane pro-

teins). PrInS scores every amino acid a proportionally to the number of

“unexpected residues” that interact with it. The term “unexpected resi-

dues” means residues that they are rarely found to be in the vicinity of

a if we consider all protein structures of a given dataset. Therefore,

PrInS is able to pinpoint residues characterized by a large number of

“less frequent” interactions, and therefore they may represent func-

tional areas of the proteins or targets of natural selection based on the

following assumption: even though a large number of unlikely interac-

tions characterizes these amino acids, nature has preserved them.
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Here, we use PrInS to describe statistically the intra-protein amino acid

interactions and consequently to construct an amino acid substitution

matrix endowed with the principle that amino acids with similar (resid-

ual) neighborhoods can substitute each other during evolution.

Protein evolution comprises two major principles. The first principle

suggests that protein structure is more conserved than the sequence.5

The second principle suggests that the physicochemical properties of

amino acids constrain the structure, the function, and the evolution of

proteins.6 Protein evolutionary rate is strongly correlated with fractional

residue burial.5 This is due to the fact that the core of a protein is mostly

formed by buried residues, which often play a crucial role in the stability

of the folded structure.7 The three-dimensional structure of the protein

determines its evolutionary rate, since most mutations in the core of a

protein tend to destabilize the protein.

Within protein families the backbone changes are infrequent,

thus, preserving the folding properties over relatively long evolution-

ary distances, while substitutions are found often at the side chains.

For example, for proteins with binding function, the binding interface

is under functional constraint and may evolve the slowest, with differ-

ences in rate between affinity-determining and specificity-

determining residues.5

In addition, the secondary structural elements of a protein evolve

at different rates. Beta sheets evolve more slowly than helical regions

and random coils evolve the fastest.5 Secondary structure changes

may eventually occur due to varying helix/sheet propensity. Some of

these changes in secondary structural composition may be evolution-

ary neutral, whereas some structural transition may involve negative

or positive selection. In the latter case, a new mutationally accessible

fold may enable the development of a new favorable function that

was not possible within the previous fold.5

In the context of folding, the thermodynamic stability of the pro-

teins with a stable unique tertiary structure is important. Thermody-

namic stability is maintained throughout evolution despite the

destabilizing effect of the nonsynonymous mutations, which are often

removed from the populations as a result of negative selection. The

protein structure is important because it acts as a scaffold for properly

orientating functional residues, such as a binding interface and a cata-

lytic residue. As a result, the selective pressure for particular

sequences (and not structures) over longer evolutionary periods is

decreased, generating a neutral network of sequences interconnected

via mutational changes.5

Choi and Kim,8 based on the most common structural ancestor

(CSA), showed that not all present-day proteins evolved from one sin-

gle set of proteins in the last common ancestral organism, but new

common ancestral proteins were born at different evolutionary times.

These proteins are not traceable to one or two ancestral proteins, but

they follow the rules of the “multiple birth model” for the evolution of

protein sequence families.8

Leelananda et al.9 emphasized the need of structural alignments

in understanding the nature of amino acid substitutions. It is known

that there are some amino acid substitutions that occur more fre-

quently in some topologies than in others and these are usually substi-

tutions that do not affect the function of these proteins. Different

protein topologies exhibit different amino acid substitution statistics.9

Therefore, we created a protein family based substitution matrix

derived from the tertiary structure of proteins and their amino acid

neighborhoods. The results of our research can be used as an extra

layer of structural information based on the proximity of amino acids

in proteins of the same family. In Leelananda et al.9 study, CATH

structures were used to extract topological information about the pro-

teins, while we used the PrInS algorithm, which allows us to statisti-

cally characterize interactions of proximal amino acids by using PDB

files. The main advantage of our study is that input data come from a

large database (PDB) with publicly available protein structures, even

from the same organism.

In this study, we used the scoring matrices that are obtained from

the PrInS algorithm to examine the evolution of proteins and we

focused on the evolution of α-helical membrane proteins. The main

hypothesis is that protein evolution is related to the three dimensional

neighborhoods of amino acids. Specifically, amino acids that have sim-

ilar amino acid neighborhoods can substitute each other during

evolution.

2 | MATERIALS AND METHODS

2.1 | Dataset retrieval and name conversion

In eukaryotes, α-helical proteins exist mostly in the plasma membrane

or sometimes in the outer cell membrane. In prokaryotes, they are

present in their inner membranes. We used 82 α-helical membrane

proteins, which were also scrutinized previously by Nath Jha et al.4 to

describe the statistical properties of amino acid interactions within

α-helical membrane proteins.

We used α-helical membrane proteins as Nath Jha et al.4 because

α-helical membrane proteins are well-studied and they form a rather

homogeneous set of proteins with restrictions posed by the physico-

chemical environment in which they are located and is drastically dif-

ferent from other protein families. α-helical proteins interact mainly

with the lipid bilayer and with a limited number of water molecules

inside the membrane. The transmembrane region of the membrane

proteins generally adopts a single type of secondary structure—either

a helix or a beta sheet. Thus, interactions of the set of 20 amino acids

differ in their propensities. For example, even though Cys–Cys has

the strongest pair propensity in globular proteins, it is extremely rare

in membrane proteins. Furthermore, Nath Jha et al.4 offered a deep

understanding on the amino acid interaction properties of the

α-helical membrane proteins and thus, their structures were used as a

proof-of-concept for the initial development of the PrInS algorithm.

First, for each of the protein in the dataset, we downloaded multiple

sequence alignments of homologous protein sequences from the

UCSC Genome Browser10 for 16 primate and 3 nonprimate mamma-

lian species. Second, three-dimensional structures were downloaded

from the Protein Data Bank (PDB) database.

In addition to the α-helical membrane proteins, we tested the

presented methodology in a set of 2298 mitochondrial protein
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structures to generate a substitution matrix and compare it with the

widely-used BLOSUM62 amino acid substitution matrix.

2.2 | The PrInS software

We applied PrInS on the three dimensional structures downloaded

from PDB. PrInS constructs a scoring matrix M as follows: If the ter-

tiary structure of a protein is represented by P and the total number

of amino acid residues is l, then residues 1 ≤ k, m ≤ l interact if and

only if:

Akm ¼ 1, ifd Ck
α�Cm

α

� �
≤6:5Å

0, otherwise

(
ð1Þ

where d Ck
α�Cm

α

� �
denotes the distance between the Cα atoms of the

k and m amino acids. In other words, the kth and the mth residues of a

protein interact if and only if the Euclidean distance between their Cα

atoms is less than 6.5 Å and they are not located on adjacent positions

on the amino acid chain. The distance of 6.5 Å was used as a hard cut-

off value in our study. However, it represents a widely accepted cut-

off value to define amino acid interactions. For example, Jiao et al.11

used also the same cut-off value to construct a network of amino

acids on the protein backbone and explore its properties. If non-Cα

atoms would be involved in the definition of the neighborhood, then a

different distance value should be used as a cut-off. For example,

Nath Jha et al.12 defines the cut-off to be only 4.5 Å if any (non-

hydrogen) atoms are employed in the distance definition. Clearly,

other cut-off values will affect the results since they will re-define

neighborhoods. However, based on the aforementioned studies the

choice of 6.5 Å appears to be a less arbitrary decision.

2.2.1 | Defining the environment of each
amino acid

According to Nath Jha et al.,4 amino acids of a HM protein can be

classified in three environments: The first environment comprises

amino acids at different distances from the lipid bilayer. The second

environment classifies the helices (and thus, their amino acids) on the

basis of their interhelical interactions inside the membrane. Finally,

the third environment classifies amino acid residues based on the

number of interactions they make. In our study, we have used

the third type of environments (residue-contact-based interaction)

based on the results from Nath Jha et al.,4 who demonstrated that the

residue-contact-based environment description of residue interaction

is more accurate for the α-helical proteins they studied. Thus, every

amino acid residue Pi in protein P can be assigned to the pair (A, K),

where A indexes the amino acid type of the kth residue (e.g., Alanine)

and K represent the environment of the kth residue. Based on the

results of Nath Jha et al.,4 we used the number of noncovalent

contacts each amino acid makes to define its environment. Thus, envi-

ronment I comprises all amino acids with 1–5 contacts, environment

II, amino acids with exactly 6 contacts, and environment III amino

acids with more than 6 contacts. In our analysis, we employed solely

noncovalent bonds, and we ignored the covalent bonds that form the

amino acid backbone of the protein chain or they are the bonds found

between the atoms of one residue. We neglect the covalent bonds

because we do not focus on the protein chain (a peptide bond is an

amide type of covalent chemical bond linking two consecutive alpha-

amino acids defining the primary amino acid structure) but on the

amino acid interactions that are present in a protein beyond the pro-

tein chain neighborhood. In other words, we focus on amino acids

that are not direct neighbors along the protein chain. Furthermore, we

should mention that we do not reject Cys–Cys bonds that are not

direct neighbors along a protein chain. Cysteine is the sole amino acid

whose side chain can form covalent bonds, yielding disulfide bridges

with other cysteine side chains. If however, those cysteine amino

acids are not consecutive amino acids, we consider them as a valid

pair in our analysis.

Initially, PrInS was used to construct a matrix M, a 60 � 60 matrix

(or equivalently nine 20 � 20 scoring matrices), that scores amino acid

interactions in all environment pairs. For example, Mi,j, i, j ≤ 20

describe score interactions between amino acids of the environment

I. In M the pairs of amino acids with the lower scores are those that

interact frequently. In general, the interaction between amino acid

A (1 ≤ A ≤ 20) and amino acid B (1 ≤ B ≤ 20) that belong to the envi-

ronments K (1 ≤ K ≤ 3) and Q (1 ≤ Q ≤ 3), respectively, is given by:

Mij ¼�ln
nA,K�B,Q

g� SA=Sð Þ� SB=Sð Þ�EK,Q

� �
ð2Þ

The coordinates i and j are given by i = 20(K � 1) + A and j = 20

(Q � 1) + B, respectively. The parameter g = 2 if the contacting pair

comprises different amino acids in the same environment (A ≠ B,

K = Q), and g = 1, otherwise. SA and SB are the total number of amino

acids A and B in the dataset, respectively. S is the total number of

amino acids in the dataset and EK,Q equals to the number of interac-

tions between environment K and Q. Finally, nA,K�B,Q is the number of

interactions between amino acids A in environment K and amino acid

B in environment Q. It is evident that Mi,j assumes large (positive)

values when the observed number of interactions nA,K�B,Q, between

A and B, is much lower than the interactions expected based on the

total frequency of the amino acids A and B in the dataset and

the number of interactions between the K and Q environments. In

other words, the value of Mij is large for rare interactions.

2.2.2 | Distance matrix

The M scoring matrix was split in nine 20 � 20 matrices and distance

metrics (Euclidean, Manhattan, and Pearson Squared) between the

elements of each matrix (amino acids) were calculated as follows: Let

Gd represent the average 20 � 20 distance matrix for the distance

metrics d (d � {Euclidean, Manhattan, Pearson Squared}). We name

these matrices neighborhood Euclidean-distance based (nEd), nMd,

and nPd, respectively, for Euclidean, Manhattan and Pearson Squared.
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For comparison purposes, we created an additional 20 � 20 distance

matrix based on the Hamming distance between a pair of codons

showing the minimum number of nucleotide changes required to

transform one amino acid to another. Smaller distance values indicate

higher similarity between the respective amino acids. Distance matri-

ces have been visualized as heatmaps (Figure S1a–d). Two amino acids

that have similar neighborhoods, that is, similar amino acid neighbors

in the tertiary structure will, thus, have a small distance (high similarity)

between them. Consequently, according to our hypothesis, they will

substitute each other during evolution at a higher rate.

2.2.3 | Substitution rate matrix

Each of the four distance matrices were transformed into rate matri-

ces Dr by using a similar procedure as in Dayhoff et al.13 In particular,

the following procedure was followed:

1. Find the maximum value of the distance matrix Dg, Dmax.

2. Subtract each matrix element from the Dmax and divide by Dmax. This

will transform Dg to an amino acid “similarity” symmetric matrix,

where 1 denotes maximum “similarity” between two amino acids.

3. Similar to the transition rate matrices used in phylogenetics ana-

lyses, one element of the matrix is defined as a reference. All other

elements are scaled proportionally to the reference. Substitution

(transition) rate matrices are used in phylogenetics to model the

transition process of amino acids along a branch of the phyloge-

netic tree. Therefore, the number of substitutions is a function of

both the substitution rate and the branch length. Substitution rate

matrices provide information related to the rate of substitution

during an infinitesimal amount of time. We have converted all

matrices to transition rate matrices to be able to compare them to

the matrices used in phylogenetics-related software. BLOSUM62

and PAM120 transition rate matrices were obtained from the

widely-used RAxML github repository (https://github.com/

stamatak/standard-RAxML)14

4. The diagonal of the matrix is defined as the negative sum of all

other elements of the respective row. This is because the sum of

the elements of each row in a transition rate matrix should be

equal to 0.

If an amino acid pair is characterized by a large (relative) substitu-

tion rate, then they can substitute each other during evolution at a

high rate. The substitution rate matrix that is derived with the afore-

mentioned algorithm is symmetric.

2.2.4 | Evaluation of PrInS ability to predict amino
acid substitutions

For the whole set of multiple alignments, a substitution 20 � 20

matrix S was created as follows: Let B the set of sites from all

sequence alignments that contain only two amino acids. Let jBj the
number of such sites. Then, if Bi, 0 < i < jBj is such a site, that contains

only amino acids a and b, B[a][b] is incremented by one. In other

words, a cell in the S matrix that corresponds to amino acids a and b,

counts how many times we observed a site from the multiple

sequence alignments with the amino acids a and b. The assumption

here is that during evolution there was at least one substitutions

between a and b for the specific site of the alignment that contains

these two amino acids. Also, the more sites with a and b, the more fre-

quent the substitution between them.

To evaluate the relation of our neighborhood-based substitution

distance matrix nEd and the multiple sequence alignments, we calcu-

lated the Pearson correlation coefficients between each amino acid in

S and nEd. Negative values of Pearson correlation coefficient values

suggest that the amino acid substitutions in the alignments are con-

cordant with the neighborhood-based substitution rates distances

(smaller distances in nEd suggest greater neighborhood similarity).

Moreover, we manually analyzed the amino acid pairs with the

lowest distance values in the Euclidean, Manhattan and Pearson dis-

tance matrices with the tool “Common Substitution Tool” in the

“Amino Acid Explorer” (https://www.ncbi.nlm.nih.gov/Class/Structure/

aa/aa_explorer.cgi) of NCBI.15 Common Substitution Tool sorts an

amino acid list from the most common to the least common substitu-

tions, given an amino acid as input, based on the BLOSUM62 substitu-

tion matrix.16

2.3 | Overall and site likelihoods

Likelihood is a function of the parameters of a statistical model for

given data. Since substitution rate matrices are part of the model, we

compared the per site and the overall likelihood values obtained by

our substitution matrices and those obtained by using BLOSUM62

and PAM120. Even though a multitude of transition rate matrices are

available to model amino acid substitution, we focused on

BLOSUM62 and PAM120 since they are among the most widely-used

amino acid substitution matrices. Both the phylogeny and the equilib-

rium frequencies of the amino acids were considered known in this

analysis. Thus, by keeping the remaining parameters the same for both

models, we aimed to assess which rate matrix can better explain the

observed multiple alignments. As overall likelihood, we defined

the total likelihood of the alignment, while a site likelihood is the likeli-

hood of a single position in the amino acid alignment. The phyloge-

netic tree was retrieved from the UCSC Genome Browser,10 and the

equilibrium frequencies of amino acids were obtained from the equi-

librium frequencies in the BLOSUM62 model. We used the same phy-

logenetic tree and equilibrium frequencies for all comparisons.

3 | RESULTS

3.1 | Evaluation of PrInS ability to predict amino
acid substitutions

To evaluate the performance of our approach, we inspected the

amino acid states present in each polymorphic site of each one of
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the 223 downloaded multiple sequence alignments. For example, if a

site in a multiple sequence alignment is the following vector: I,I,I,

L,L,L,I then, this implies that during evolution there was a substitu-

tion from I to L or vice versa. Most of the sites in a multiple sequence

alignment contain a maximum of two amino acids, implying a mini-

mum of a single substitution during evolution. If more than two states

are included (implying more than a single substitution), then we con-

sidered only the two most frequent amino acid states. Thus, by

considering all pairs present in the multiple sequence alignment sites,

we construct a matrix which indicates which substitutions have

occurred more frequently during evolution. This “observed” substitu-

tion matrix counts the amino acid substitutions that occurred in the

223 downloaded multiple alignments using the two most frequent

amino acid residues at each alignment site. For each amino acid in this

matrix, we evaluated its correlation (Pearson correlation coefficient)

with the same amino acid in the matrices we generated following the

neighborhood approach presented in this study. Thus, if, for a given

amino acid, both matrices suggest similar substitution preferences,

then neighborhood-based substitution models are concordant with

the observed substitutions. Since we used distance matrix in this anal-

ysis, negative correlation coefficient indicate concordance. Results

suggest that there is concordance between the substitution matrix

and our neighborhood-based distance matrices for most of the amino

acids. Figure 1 shows the Pearson correlation coefficients for amino

acids using the substitution matrix and the nEd. The correlation plots

between the substitution matrix and other distances are illustrated in

the Figure S2a–c.

As shown in Figure 1, most of the amino acids are concordant

when we compare the Euclidean distance matrix and the substitution

matrix.

In the Figure S2b (substitution vs. Manhattan distance), the dis-

cordant amino acids were the five out of six amino acids of Figure 1.

Similar results are shown in Figure S2c, where the substitution matrix

is compared against the squared Pearson distance matrix. Finally,

there are no discordant amino acids in the correlation between the

Consensus matrix and the Genetic Code matrix (Figure S2a).

Furthermore, the amino acid pairs with the lowest values in the

distance matrices are at the top of the amino acid list that the Com-

mon Substitution Tool of NCBI Amino Acid Explorer reports. This

means that amino acids with similar three dimensional neighbor-

hoods tend to substitute each other. For example, in Euclidean dis-

tance matrix, the Leucine–Isoleucine pair has the lowest distance

value and according to the substitution list of Amino Acid Explorer,

Isoleucine is the most common substitution of Leucine. Figure 2

shows the first five most common amino acid substitutions for Leu-

cine according to “Common Substitution Tool” (Figure 2A) and

according to the Euclidean distance matrix (Figure 2B). Evidently,

the Euclidean distance matrix can predict the most common substi-

tutions of Leucine, but in slightly different order. For example, Com-

mon Substitution Tool reports the following order of amino acids:

Isoleucine, Methionine, Valine, Phenylalanine, and Alanine.

According to the Euclidean distance matrix, the order is Isoleucine,

Phenylalanine, Valine, Tryptophan, and Tyrosine. Methionine is the

sixth most common substitution of Leucine, while Alanine is the

tenth most common substitution of Leucine according to the Euclid-

ean distance matrix. On the other hand, Tryptophan and Tyrosine

are the seventh and the eighth most common substitutions of Leu-

cine according to the Common Substitution Tool. Neglecting the

order of the first five substitutions, drawing five amino acids and

observing three common is marginally significant (p-value = .07,

right tail of hypergeometric distribution). Differences between two

reports are possibly due to the fact that Euclidean distance matrix is

solely based on the structural information of a protein family, while

the Common Substitution Tool is based on BLOSUM62 substitution

matrix that was created using alignments of multiple protein

families.

According to the previous analyses, we can rely on the structural

information of the proteins, which is given by the Euclidean distance

matrix, to model amino acid substitutions similarly as using

sequence data.

3.2 | Pairwise comparison of proteins in different
species

Using the Euclidean-based distance matrix, we scored the differences

of each protein sequence to its human homolog. Results are pres-

ented as a heatmap and are clustered hierarchically based on their dis-

tance from the human homolog (Figure 3). Darker gray tone in

Figure 3 denotes high similarity between human and other species

homologs, whereas lighter tones suggest lower similarity. As expected,

proteins from species that are evolutionarily distant from humans are

more dissimilar to human homologs. This is especially true for a group

of proteins clustered together using the Euclidean distance-based

substitution matrix (Figure 3 proteins labeled with three dashes). The

same analysis was repeated by using the Genetic Code, Manhattan,
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and Pearson distance matrices instead of Euclidean distance matrix.

The results are shown in Figure S3a–c.

The group of proteins clustered together by the Euclidean-based

matrix (marked in the lower part of Figure 3) was further scrutinized

by Gene Ontology (GO) terms. We used gProfiler,17 to obtain the

related GO terms for this set of proteins. These proteins are charac-

terized by a distinct function compared to proteins found in other

clusters. On the one hand, the proteins that are located in this cluster

play a crucial role in the intestinal absorption of phytosterol and in

cholisterol and lipid transportation. On the other hand, the remaining

proteins, which are not found in this discrete cluster, are responsible

for the homeostatic and transducer/receptor mechanisms of the cells.

Hierarchical clustering of species based on the nEd distance

matrix orders the species from human as expected, putting Chimpan-

zees, Gorilla, Orangutan, and other primates closer to human, while

nonprimate mammals (e.g., mouse and dog) are located more distant

(Figure 3). Thus, using the nEd distance matrix, the evolutionary rela-

tions between species behave as expected.

3.3 | Overall and site likelihoods

By converting PrInS distance matrices into rate matrices, it was possi-

ble to compute the overall likelihood and site likelihoods for every

protein alignment. The resulting matrices from the nEd, nMd, and

nPSm are named as nEs, nMs, and nPSs, respectively. For most of the

proteins, 170 out of 223, the likelihoods computed by BLOSUM62

and PAM120 were better than our neighborhood Euclidean-based

substitution matrices. This result is expected since BLOSUM62 and

PAM120 substitution matrices were constructed based on alignment

files, whereas the presented substitution matrices are alignment-

unaware. For the remaining 54 protein alignments, our models and

more specifically the Euclidean-based rate matrix resulted in higher

likelihoods.

For every protein, we calculated the individual site likelihood for

each amino acid site in the multiple sequence alignment using either

the BLOSUM62 (or PAM120) or the nEs matrix. Results are illustrated

in Figure 4) for the protein NCKX1, where the likelihood difference
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F IGURE 2 The first five most
common substitutions of Leucine
according to (A) Common Substitution
Tool and (B) Euclidean Distance
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both figures. Dark green shows the
first most common substitution, while
the red shows the fifth most common
substitution. Methionine and alanine

are not found among the first five
most common substitutions of
Leucine in Euclidean distance matrix,
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between BLOSUM68 and nEs is plotted for every amino acid. Thus,

negative values are related to sites where the likelihood is greater for

the nEs matrix, whereas positive values show sites where BLOSUM62

results in greater likelihoods. For the protein NCKX1, 240 sites are

scored with a higher likelihood using the Euclidean substitution matrix

derived from PrInS (negative values), whereas 390 sites are scored

with a higher likelihood using BLOSUM62 (positive values). The over-

all likelihood difference for this protein is positive (264.4) indicating

that overall BLOSUM62 results in higher likelihood scores. NCKX1

was randomly selected to illustrate the site likelihood differences

between the two approaches. It is a critical component of the visual

transduction cascade, controlling the calcium concentration of outer

segments during light and darkness.18

In the Figure 4a–c, we show the site likelihood differences

between the BLOSUM62 rate matrix and (i) the genetic code rate

matrix 4a, (ii) the Manhattan rate matrix 4b, and (iii) the Pearson

rate matrix 4c.

In calculating overall and site likelihoods, the sequence-based

methods, such as BLOSUM62 and PAM120 rate matrices, are better than

the structure-basedmethods (Euclideanmatrix); however, this is expected

because BLOSUM62 and PAM120 rate matrices are based on sequence

alignments and here are used to score sequence alignments, whereas the

structure-basedmethodswe present are alignment-unaware.

3.4 | Comparison between the average
substitution likelihoods for different rate matrices

The 20 amino acids form
20

2

� �
¼190 (unordered) pairs. For each

of them, we have calculated the average differences between the

BLOSUM62-based and the nEs-based likelihoods. For the calculations,

we considered only the sites that consist of two amino acid states.

Since all the parameters of the evolutionary model, but the substitu-

tion rate matrix are fixed (phylogenetic tree, equilibrium frequencies),

then the matrix that results in the highest average likelihood for a cer-

tain amino acid pair describes the preferential model for this amino
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F IGURE 3 An illustration of the scoring
of multiple alignments with the Euclidean
distance matrix as a heatmap. Each protein
(rows) from human (first column) is
compared against the homologous proteins
from another species (columns) using
pairwise amino acid sequence alignments.
We used only the alignment sites with
amino acids A and B, where A ≠ B and

A ≠ � and B ≠ �. The total score (a cell in
the heatmap) is calculated as the sum of all
site scores. Proteins form two clusters based
on the hierarchical tree on the left side of
the figure. Proteins of the bottom cluster
(also denoted with three dashes are further
analyzed using Gene Ontology terms
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F IGURE 4 In this graph the differences between the
BLOSUM62-based and the Euclidean-based likelihoods for each site
of the NCKX1 protein is shown. On the x axis, the protein sites are
shown, while on the y axis the differences between the likelihoods are
depicted. Positive differences indicate higher likelihoods for the
BLOSUM62 rate matrix, whereas negative differences indicate higher
likelihoods for the Euclidean rate matrix
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acid pair. Surprisingly, even though most of the protein alignments

are scored with a higher likelihood using BLOSUM62, 111 (out of

190) amino acid pairs are characterized by negative average likeli-

hood difference. This indicates that the nEs-based likelihood is

greater than the BLOSUM62-based likelihood. The average likeli-

hood is greater for the BLOSUM62 for only 50 pairs, whereas it

cannot be assessed for 29 pairs because no occurrences of these

29 pairs were present in the alignment datasets. To scrutinize fur-

ther this result, we plotted the average likelihood difference as a

function of the occurrence frequency of the amino acid pair in the

alignment (Figure 5). In Figure 5, it is apparent that the average like-

lihood difference is positively correlated with the frequency of

occurrences of the amino acid pairs (r = 0.621, r is the correlation

coefficient, CI: [0.55, 0.67], CI denotes the 95% confidence inter-

vals). In other words, the more frequent a substitution is in the

alignments, the higher the difference of likelihoods, favoring the

BLOSUM62 versus the nEs.

The heatmap in Figure 6 shows all amino acid pairs and the likeli-

hood differences between the BLOSUM62 and the nEs matrix for all

amino acid pairs. Cells denoted by a “�” are characterized by a higher

likelihood for the Euclidean-based matrix, whereas a “+” denotes cells

with higher BLOSUM62-based likelihood. The darker the color of the

cell the higher the difference between the two likelihoods. Cells with an

“o” illustrate pairs where no site with this pair of amino acids was found

in any of the alignments. The greatest value for a “�” cell is represented
for the “Arginine–Glycine” pair. This means that the nEs matrix is a

preferential model for the specific amino acid pair. On the other hand,

the pair with the highest “+” value is the “Isoleucine–Valine” pair.
In contrast to the overall and site likelihoods, the average substi-

tution likelihoods are calculated better by using structural (Euclidean

rate matrix) than sequence (BLOSUM62 and PAM120 matrices) based

methods.

3.5 | Comparison to Grantham's and Sneath's
distance matrices

Grantham's distance19 between two amino acids depends on three

properties: composition (defined as the atomic weight ratio of nonca-

rbon elements in end groups or rings to carbons in the side chain),

polarity, and molecular volume. Based on these three properties, dis-

tance DG[i,j], between amino acids i and j, is defined as:

DG i,j½ � ¼ α ci� cj
� �2þβ pi�pj

� �2þ γ vi�vj
� �2h i1=2

ð3Þ

where c is the composition, p the polarity, and v the molecular volume.

The three components of the distance (c, p, v) are not independent.

Thus, the constants α, β, γ serve as normalizing factors and they can

be calculated as a function of c, v, p.19 Grantham (1974) provides the

distances of Equation (3) for all amino acid pairs, thus a distance

matrix D. Furthermore, Grantham demonstrated that the relative sub-

stitution frequency of amino acid pairs and their distances DG[i,j]'s are

correlated, underlying the physicochemical basis of amino acid

substitution.

Similarly to Grantham's amino acid distances, Sneath's index20

takes into account 134 categories of activity and structure. The dis-

similarity index DS[i,j] is the percentage of the sum of all properties not

shared between two amino acids.

The amino acid neighborhood-based distance is correlated with

both the Grantham's and Sneath's distances Figure 7, highlighting the

fact that amino acid neighborhoods capture information related to the

physicochemical properties of amino acids and also their relative sub-

stitution frequency.

The correlations between the Euclidean and Sneath's and the

Euclidean and Grantham's distance matrices comprise additional evi-

dence for the ability of protein structural information to predict the

amino acid substitutions in a protein family.

3.6 | Construction of transition rate matrices for
mitochondrial proteins

We tested our neighborhood-based amino acid transition rate matrix

construction pipeline with human mitochondrial protein structures

from the Protein Data Bank to examine whether the proposed
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F IGURE 5 The average likelihood difference between the
BLOSUM62-based and the Euclidean-based approaches that have been
used to calculate likelihoods. As the figure indicates, for the majority of
amino acid pairs the likelihood difference is close to 0, that is, both the
Euclidean-based calculations and the BLOSUM62-based calculations
result in similar outcomes. Positive values are fewer than negative values
(see text); however, the magnitude is much greater for positive values
than for negative, indicating that BLOSUM62 results in much greater
likelihoods than the Euclidean-based approach. Furthermore, as the
occurrence frequency of the amino acid increases the difference of the
likelihood increases as well, suggesting that BLOSUM62 outperforms
the Euclidean-based approach for the amino acid pairs that occur
frequently, either within the same protein or in different proteins [Color
figure can be viewed at wileyonlinelibrary.com]

8 PRIMETIS ET AL.

http://wileyonlinelibrary.com


methodology can be extended to other protein groups beyond the

α-helical membrane proteins. Since mitochondrial proteins do not rep-

resent a certain functional group of proteins (e.g., transmembranes)

we expect less concordance to BLOSUM62 and PAM120 than the

α-helical membrane proteins. Indeed, Figure 8 shows that the Pearson

Correlation coefficient between the elements of the BLOSUM62

transition rate matrix and the mitochondrial Euclidean-based transition

rate matrix (Supporting Information S1) is 0.228, whereas the Pearson

correlation coefficient between the BLOSUM62 and the α-helical

Euclidean-based transition rate matrix is 0.362. Thus, the agreement

between BLOSUM62 and α-helical matrix is greater than the mito-

chondrial matrix (Figure 8).

F IGURE 6 Comparison of likelihoods
between BLOSUM62 and nEs for all
amino acid pairs found in the protein
alignments. Boxes with a “–” pinpoint to
the specific amino acid pairs where nEs
calculates a higher site likelihood.
Contrarily, a “+” indicates amino acid
pairs that the BLOSUM62 approach
results in greater likelihood. Finally, “o”
cells depict the amino acid pairs that were
not found in the multiple alignments, thus
no comparison was possible. The darker
the tone of the cell the greater the
difference in the likelihood between the
BLOSUM62 and the nEs approach [Color
figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 7 Scatterplots between amino acid distances for different distance methods. (A) Euclidean-based distance versus Sneath's index
(r ≈ 0.5). (B) Sneath's index versus Grantham's distance (r ≈ 0.5). (C) Euclidean-based distance versus Grantham's distance (r ≈ 0.66) [Color figure
can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Evaluation of PrInS ability to predict amino
acid substitutions

In this study, we focused on the amino acid substitutions. We investi-

gated if they can be determined from the properties of their neighbor-

hood tertiary structure. We described statistically the amino acid

residual neighborhoods using the software PrInS. Then, we converted

PrInS output files to amino acid distance matrices and substitution

rate matrices and evaluated their ability to model evolutionary

changes.

Correlation analysis between the observed substitution frequen-

cies (from multiple sequence alignments) and the distance matrices

indicated that residual neighborhoods capture evolutionary informa-

tion and thus they can be useful in modeling evolution. In other

words, substitutions in multiple sequence alignments can be predicted

from the amino acid neighborhoods: residuals with similar neighbors

can substitute each other, with a higher rate, during evolution. More

specifically, from the three distance matrices (Euclidean, Manhattan,

and Pearson Squared) that were compared against the substitution

matrix, only five amino acids were discordant in at least two compari-

sons. These amino acids were proline, arginine, serine, tryptophan,

and tyrosine. From the substitution matrix, only a few substitutions

involve tryptophan and tyrosine, whereas there is a multitude of sub-

stitutions involving proline, arginine and serine. In contrast, based on

distance matrices, in the columns of tryptophan and tyrosine, there

are small distance values, while in the proline, arginine, and serine col-

umns distances are large. This can explain the discordance of these

amino acids in these two matrices, because a large number of substi-

tutions are associated with small distance values for an amino acid.

In addition, the Common Substitution Tool of NCBI Amino Acid

Explorer15 enhances our main result: Amino acid pairs with the lower

distance values in the distance matrices, especially using Euclidean

distances, are found to substitute each other more frequently. Amino

Acid Explorer returned a list of the amino acids from the most com-

mon to the less common substitution for an amino acid we put as

input. There are some differences in the order of the amino acids

between the Common Substitution Tool and the distance matrices

(e.g., Euclidean). These differences are possibly based on the fact that

the generation of the Euclidean distance matrix is based solely on the

structural information of a protein family (α-helical membrane pro-

teins), while the Common Substitution Tool is based on BLOSUM62

substitution matrix that was created from alignments from multiple

protein families. This possibly means that some specific amino acid

substitutions are observed more frequently in the α-helical membrane

proteins, which are not found so often in the other protein families.

These substitutions may play a crucial role in the distinct function of

the α-helical membrane proteins.

4.2 | Multiple alignment scoring and clustering of
proteins

After the evaluation of the ability of PrInS to predict amino acid sub-

stitutions, the scoring of multiple alignments with the matrices gener-

ated by our methodology was followed. The matrices that were used

in the scoring of multiple alignments were distance-based, genetic-

code-based and model substitutions matrices (BLOSUM62 and

PAM120).13,16 This was the second step in our analysis. Generally,

most of the proteins did not significantly differ from the human

homologs, which are found in the first column of all the heatmaps.
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F IGURE 8 Pearson correlation coefficient between (A) BLOSUM62 and α-helical transmembrane protein transition rate matrices (Euclidean
distance-based) and (B) BLOSUM62 and human mitochondrial transition rate matrices (Euclidean distance-based). The correlation coefficient in
(A) is 0.362 and in (B) is 0.228. For both datasets, the positive correlation coefficient suggests that transition rate matrices based on amino acid
neighborhood are at least partially concordant with the BLOSUM62 matrix, even though there is a greater matrix with the α-helical based matrix
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Obviously, homologous proteins in evolutionary distant species from

human differ more than the homologs in more related species. Based

on the substitution rate matrices, we calculated the likelihood for

every protein pairwise alignment (human vs. nonhuman species).

Using the Euclidean-based matrix, a cluster of proteins was appeared

(hierarchical clustering) and its functions were studied using

gProfiler.17 The proteins in the discrete protein cluster play a crucial

role in the intestinal absorption of phytosterol and in cholesterol and

lipid transportation, while the proteins of the other clusters are

responsible for the homeostatic and transducer/receptor mechanisms

of the cells.

4.3 | Limitations

Even though there are specific substitution matrices for transmem-

brane proteins (e.g., PHAT),21 in this study we employed only general

substitution matrices such as the BLOSUM62 and the PAM120. This

is because our goal was not to provide a more suitable substitution

matrix for a specific protein family but to provide insights into a plau-

sible mechanism guiding the amino acid substitution during evolution.

A thorough comparison with substitution matrices specialized on cer-

tain protein families (e.g., transmembrane proteins, globular proteins)

will be the goal of a future study. In addition, a future goal is to con-

struct substitution matrices for all protein families present in Protein

Data Bank and compare them to obtain insights into their evolution.

5 | CONCLUSION

By using only publicly available structural data (PDB files), without

multiple sequence alignment files, we were able to create transition rate

matrices concordant with the widely-used in phylogenetics

BLOSUM62 and PAM120 transition rate matrices. With these matri-

ces we scored multiple-sequence alignments of proteins from closely-

related species including human. It is important that neighborhood-

based transition rate matrices can be easily built from publicly avail-

able data (PDB files) that exist in databases such as the Protein Data

Bank database. The pipeline is not restricted to a specific species and

it can be applied to any species.

The main result of this project is that, by solely using protein

structural data, we are able to predict the amino acid substitutions in

a protein family. The proposed algorithm can be generalized for any

protein family to (i) build family specific substitution rate matrices and

(ii) based on these matrices to highlight the differences observed

between protein families. Furthermore, the pipeline is straightforward

comprising the following steps: (i) download PDB files from a publicly

available database, (ii) run the PrInS algorithm to generate a statistical

description of amino acid neighborhoods, and finally (iii) generate

transition rate matrices in which amino acids that have similar neigh-

bors will be able to substitute each other at a higher rate. In many

cases, these results are similar with the results obtained by multiple

sequence alignment data. Finally, based on the outcomes of the study,

we can support our initial hypothesis that the amino acids with similar

neighbors in the tertiary structure of the protein can substitute each

other during evolution.
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