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Abstract: Full-genome-sequence computational analyses of the SARS-coronavirus (CoV)-2 genomes
allow us to understand the evolutionary events and adaptability mechanisms. We used population
genetics analyses on human SARS-CoV-2 genomes available on 2 April 2020 to infer the mutation rate
and plausible recombination events between the Betacoronavirus genomes in nonhuman hosts that
may have contributed to the evolution of SARS-CoV-2. Furthermore, we localized the targets of recent
and strong, positive selection during the first pandemic wave. The genomic regions that appear to be
under positive selection are largely co-localized with regions in which recombination from nonhuman
hosts took place. Our results suggest that the pangolin coronavirus genome may have contributed
to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find
evidence for additional recombination events that involve coronavirus genomes from other hosts,
i.e., hedgehogs and sparrows. We further infer that recombination may have recently occurred
within human hosts. Finally, we estimate the parameters of a demographic scenario involving an
exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian,
and Northern American cohorts, and we demonstrate that a rapid exponential growth in population
size from the first wave can support the observed polymorphism patterns in SARS-CoV-2 genomes.

Keywords: SARS-CoV-2; population genetics; recombination; mutation rate; selective sweeps;
demographic inference

1. Introduction

In late December 2019, Chinese health authorities reported a cluster of atypical pneu-
monia cases epidemiologically linked with the Huanan Seafood Wholesale Market in
Wuhan, Hubei Province, China [1]. On 7 January 2020, these cases were associated with a
novel human coronavirus (hCoV), dubbed SARS-coronavirus (CoV)-2 [2], which consti-
tutes the third documented spillover from mammals, but it is divergent from SARS-CoV
and MERS-CoV that caused past epidemics [3,4]. Two weeks later, the United States of
America reported the first confirmed case of SARS-CoV-2 infection while the first three
cases in Europe were confirmed on 24 January 2020 [5]. As of 6 December, the pandemic
coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19)
has infected more than 65.8 million people and has caused more than 1.5 million deaths
(WHO, COVID-19 Situation Report 6 December 2020).

As the outbreak progresses over time, laboratories around the world are sequencing
SARS-CoV-2 genomes from various human sources and timepoints to track the disper-
sal pattern of the pandemic. SARS-CoV-2 belongs to the Betacoronavirus genera and,
structurally, is an enveloped RNA virus with a non-segmented, positive-sense (+ssRNA)
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genome of ≈30 kb, amongst the largest identified RNA genomes [6,7]. The application
of next-generation sequencing (NGS) approaches on pathogens can elucidate important
features such as disease transmission and virulence [8]. In fact, NGS data accumulate at
an unprecedented rate, and during the first wave of the COVID-19 epidemic, the Global
Initiative on Sharing All Influenza Data (GISAID) database, which originally promoted
the international sharing of all influenza virus sequences, as of 2 April, included 3230
SARS-CoV-2 genome data submissions (2305 full-length sequences with high-coverage).

Population genetics can provide insights into the spread and epidemics of viruses
because it offers the machinery to estimate the values of parameters such as the mutation
and recombination rate. Both of these parameters are important for the evolution and
the management of viral diseases. Mutation rate and recombination as well as stochastic
(random genetic drift) and non-stochastic processes (selection) are the dominant forces that
shape viral diversity in natural populations of RNA viruses. RNA viruses demonstrate the
highest mutation rates of any group of organisms [9], which may lead to viral adaptation
to selective pressures and may alter their virulence. In addition, recombination has an
important role in evolution because it elevates haplotypic variability in viral populations
and potentially generates highly fitted genomes more rapidly than by mutation rate alone,
especially when epistatic interactions are present between different genomic locations.
Research on viral recombination rates has demonstrated its association with increased
genetic diversity and the generation of novel lineages and new pathogenic recombinant
circulating viruses [10,11]. Many recent studies suggest that recombination events may
have shaped the architecture of the SARS-CoV-2 genome [12,13]. It has been suggested
that it shares 96.3% genetic similarity with a bat coronavirus (CoV) [14] and 91.2% genetic
similarity with two pangolin coronavirus (CoV) genomes, especially in the S gene. Fur-
thermore, the latest studies suggest that the pandemic SARS-CoV-2 genome might have
evolved from a bat CoV [6,13,15–20]. Recombination events between SARS-CoV-2 and
RaTG13 (bat CoV) have also been observed in ORF1a [1], in the receptor-binding domain
(RBD), and at the furin site [21]. More recent findings suggest that the SARS-CoV-2 genome
backbone evolved from Yunnan bat virus-like SARs-CoVs, and its RBD region acquired
from pangolin virus-like SARS-CoVs [17,22,23].

High mutation and/or recombination rates imply that developing a successful vaccine
will be challenging since viral genomes will be able to adapt fast in human interventions [6].
Moreover, population genetics provides tools to infer the recent evolutionary history of
populations, both adaptive and non-adaptive. Thus, by using statistical approaches, such
as the approximate Bayesian computation (ABC) [24], it is feasible to assess past population
size changes by using only present-day genomic data. RNA viruses demonstrate immense
population sizes [9], and the study of the population demographic history could support
viral epidemiological research. A previous study, in particular, has associated the change
from a bat CoV population of constant size to a population growth of CoVs from other
hosts, with the interspecies transmission of viruses from their original reservoir to an
alternate host [25]. Furthermore, selective sweep theory [26–28] allows for the localization
of the targets of recent and strong selection on genomes.

In this study, we aim to elucidate the evolution of early viral strains by implementing
population genetics approaches on full-length human SARS-CoV-2 genomes available
from the GISAID database [29]. Understanding the SARS-CoV-2 evolutionary processes
would enable us to assess critical parameters, such as the mutation rate and plausible
recombination as well as recent selective sweeps and population demographic parameters,
which can directly affect the evolution of this virus within the human population. Such
results will support epidemiological research on tracing dispersal patterns of the pandemic
and on designing therapeutic or preventive strategies.

2. Materials and Methods

Our dataset comprised all publicly available genomic data from the GISAID database,
downloaded on 2 April 2020, to infer evolution of SARS-CoV-2 strains circulated during
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the first wave of the pandemic. The initial dataset comprised 3230 full genome assembled
sequences, with only 2305 of those fulfilling the high-coverage criterion. We applied
additional filters to keep only high-quality sequences (see below). The final dataset consists
of 1895 human SARS-CoV-2 genomes and two outgroup sequences: bat CoV and pangolin
CoV genomes. All analyses except for selective-sweep localization were performed on
this dataset.

2.1. Mutation Rate Analysis and Estimation of the Time of the Most Recent Common Ancestor
between Bat CoV and SARS-CoV-2

We performed a regression analysis to estimate the mutation rate per nucleotide and
per day, denoted by µ. The collection date of the samples was recorded in the GISAID
repository. Let hi be the collection date for sample i. Divergence between sample i and the
bat CoV sequence was estimated using the Kimura80 approach and is denoted by d [30]. If
we perform a regression analysis of the number of nucleotide differences (divergence) as a
function of collection date, there should be a relation of the following form: d = hi * µ + β.
This linear relationship between the variables indicates that the divergence between sample
i and the bat coronavirus increases linearly with time. The regression intercept β indicates
the divergence of the first sampled SARS-CoV-2 sequence in Wuhan from the bat CoV. To
estimate the parameter µ, we calculated the slope of the regression line. Furthermore, the
point at which this line crosses the x-axis (the axis of sampling dates) denotes the time
point tbat/Cov2 at which the divergence between bat and SARS-CoV-2 is 0, i.e., the time of
the most recent common ancestor between bat CoV and SARS-CoV-2.

2.2. Recombination Analysis of Nonhuman Betacoronaviruses That Have Contributed to the
SARS-CoV-2 Evolution and between the Human SARS-CoV-2 Genomes

Recombination evaluation was performed with a blast-based analysis. Let DS (Dataset
Sars) denote the human SARS-CoV-2 genomes fasta dataset as it was downloaded from
the GISAID database. Furthermore, DC (dataset coronavirus) denotes the dataset that
comprises 55 Coronaviridae sequences downloaded from NCBI and the pangolin (GISAID
accession ID: EPI_ISL_402131) and bat (GISAID accession ID: EPI_ISL_410721) sequences
from GISAID (thus, 57 sequences in total). Also, DBP (dataset pangolin/bat) is a dataset
with only two sequences: the bat and the pangolin sequence from GISAID. First, using DS,
we generated a new dataset called DSS (dataset SARS split), which comprises all the unique
300-mers from the whole DS. To detect potential contribution of bat/pangolin-recombinant
sequences into human SARS-CoV-2 genomes, we blasted the DSS dataset against the DBP
dataset (i.e., DBP is the blast database, and DSS is the query set). If a sequence DSSi (or
an ancestral sequence of it) is the result of recombination between the bat coronavirus
sequence and the pangolin coronavirus sequence, then the sequence is matched to both bats
and pangolins in consecutive parts. Thus, if DSSi is a sequence of length L (here L = 300 bp),
we look for blast results of the following form: DSSi [a, b] matches bat/pangolin and DSSi
[c, d] matches pangolin/bat, where 1 ≤ a ≤ b ≤ c ≤ d ≤ L. We applied also the following
restrictions: 1 ≤ a ≤ 10, L-10 ≤ d ≤ L, |b − c| ≤ 20. In other words, a should be at the
beginning of the 300-mer, d should be at the end of the 300-mer, and the distance between
the bat-like and the pangolin-like parts should be smaller than 20. Further details on the
recombination detection process are provided in Supplementary Materials Text S1 and
Figure S1.

To detect other potential recombination events, we used as a blast database the DC
dataset to search for recombinants from other hosts besides bat and pangolin. Furthermore,
to detect recombination between human SARS-CoV-2 sequences or their unsampled ances-
tral CoVs sequences, we used the DS dataset as a blast database. The specific parameters for
running blastn were the following: -outfmt 6 (to present the results in a tabulated format),
–word_size 10 (to capture even small fragments), and -evalue 0.1 (to capture small fragments).
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2.3. Linkage Disequilibrium (LD) in Human SARS-CoV-2 Genomes

An indirect approach to inferring recombination in a sequence is the decay of linkage
disequilibrium (LD) as a function of distance. Given the demographic model, LD between
two sites may decrease either due to recombination events or due to recurrent mutations,
thus violating the infinite site model [31]. From these two causal reasons of LD decay,
only recombination decreases LD as a function of the distance between two sites since
the recombination rate is proportional to the distance of the two sites. We used plink
to calculate r2 [32] as a measurement of the haplotypic LD between all possible pairs of
polymorphisms in the SARS-CoV-2 genome. Then, we modeled LD as a linear function of
distance (assuming that the recombination rate is constant along the genome) as follows:

r2 = ax + b (1)

where x is the distance between two sites, and a and b are the slope and intercept, respectively.
If a is negative, then it supports the presence of recombination on the SARS-CoV-2

genome. On the other hand, if a is not statistically different from 0, then recombination
may not be a reason for LD patterns along the genome.

2.4. Selective Sweeps and Common Outliers

To estimate potential targets of selective sweeps, we deployed the software tools
SweeD [33] and RAiSD [34]. A selective sweep analysis detects characteristic patterns of
polymorphisms attributed to the action of recent and strong positive selection from a new
allele. The key mechanism that generates such polymorphic patterns is the fast increase in
the beneficial mutation and the recombination rate [35]. Currently, the whole population of
human SARS-CoV-2 is rapidly expanding. Furthermore, even though recombination may
be present in viruses, our analyses did not find evidence of recombination among human
SARS-CoV-2 sequences. This outcome does not suggest that recombination is absent but
rather that diversity within the human SARS-CoV-2 is not large enough to allow for the
detection of recombination events. Thus, a selective sweep analysis may still be meaningful
for SARS-CoV-2.

We performed a selective sweep analysis for each separate population (Asia, Europe,
North America, South America, Oceania, and Africa) and for the total worldwide sample.
SweeD was executed using its default parameters and a grid size of 5000 positions along
the genome (-grid parameter), which led to the calculation of a composite likelihood
ratio (CLR) score every 6 nucleotides, on average. Due to the tool’s high computational
complexity for computing the site frequency spectrum, which can lead to prohibitively
long execution times when the sample size increases, we used a smaller sample size
for the worldwide analysis. The SweeD-based analysis of the employed dataset, which
comprised 1601 genomes, required 112 CPU hours. Initial analyses with smaller sample
sizes (performed as data and available online for a period of three weeks) revealed that
SweeD results remain largely identical when the sample size exceeds 1000 sequences.

Unlike SweeD, which relies on maximum-likelihood estimation at predefined positions
along the data, RAiSD computes the µ-statistic using a polymorphism-driven sliding-
window algorithm. RAiSD was executed using a sliding-window size of 8 polymorphisms
(-w parameter) and a step of 1 polymorphism (default). We also increased the slack for
the SFS edges to 2 (-c parameter), which directed the tool to also consider doubletons and
polymorphisms that belong to the S-2 class in the calculation of the µSFS factor, where S is
the sample size. The default value for the SFS edge slack is 1, considering only singletons
and polymorphisms in the S-1 class.

To conduct a common-outlier analysis based on the results obtained by SweeD and
RAiSD, we implemented a series of extensions directly in the source code of RAiSD. More
specifically, we introduced a new parameter (-G) that specifies the grid size similarly to
SweeD, which directs RAiSD to report scores at the same positions as SweeD when the
same grid size is given. Given the RAiSD polymorphism-driven approach, however, scores
for the required positions are calculated using linear interpolation based on the initially
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evaluated positions. To detect common-outlier regions, we sorted the evaluated positions
in each of the tool reports based on their associated scores and set the top 0.05 value as
the cutoff threshold per method. This allowed us to identify all outlier positions per tool.
Thereafter, we computed all pairwise base distances between SweeD and RAiSD outlier
positions and reported candidate outlier position pairs if the evaluated positions were
closer than 400 bases. The common-outlier analysis was integrated as a feature in RAiSD
to facilitate reproduction of the results. The following example command line was used to
detect common-outlier regions:

RAiSD -I inputFile -n runName -CO SweeDReport 1 2 -COT 0.05 -O -COD 400 -c 2 -w
8 -G 5000.

The -CO parameter provides a path to the SweeD report and the column indices for the
positions and the scores. The -COT and -COD parameters specify the cutoff threshold for the
outliers and the maximum distance between SweeD/RAiSD outlier positions, respectively.

2.5. Estimation of the Time of the Most Recent Common Ancestor

To estimate the time of the most recent common ancestor, we applied the following:
Let x0 be the sequence of SARS-CoV-2 from the first reported patient in Wuhan. The
sampling date was 24 December 2019. Any other sequence yi of sample i has a common
ancestor with x0 at some time ti earlier than the date 24 December 2019. To assess ti, we
need to consider the differences (diversity), δi, between x0 and yi. The older it is, the more
differences on average will exist between x0 and yi. In general, the expected number of
differences, δi, between x0 and yi is δi = (Di + 2ti)µl, where µ is the mutation rate per base
per day, l is the length of the genome (here, we used the value 30,000 bp), and Di is the
number of days between the sampling date of x0 and yi. Substituting δi with the observed
number of pairwise differences between x0 and yi, µ = 1.87 × 10−6 (see the subsection
“Estimation of mutation rate and divergence from bat” in the Results Section), we can
estimate the parameter ti for sample i. Finally, we estimated the expected value of ti and the
variance Vt of ti as the sample average of the ti values and the sample variance, respectively.
The reason behind using the first reported patient in Wuhan is that the common ancestor
between this sequence and any other sequence should be either on 24 December 2019 or
earlier than this date. On the contrary, it is possible that any two different sequences yi and
yj (sampled later during the pandemic) have a common ancestor more recently than the
date 24/12/2020; thus, it would not be possible to use them in order to estimate the time of
the most recent common ancestor.

2.6. Demographic Inference

The demographic analysis was performed in an approximate Bayesian computation
(ABC) framework. ABC is a Bayesian approach that bypasses the exact likelihood com-
putation by using stochastic simulations and summary statistics. [24]. In our analysis,
we modeled the demography of the SARS-CoV-2 dataset that infected Asian, European,
and Northern American cohorts. An important approximation in an ABC analysis is the
replacement of the full data by a set of summary statistics. These are numerical values
calculated from the data such that they represent the maximum amount of information in
the simplest possible form [36]. The summary statistics were calculated from the multiple
sequence alignment (MSA) of each population’s sequences by msABC [37] and include (1)
estimates of genetic diversity—the Watterson’s estimator θw [38] and the mean pairwise
differences of sequences θπ [39]—(2) a summary of the site frequency spectrum in the form
of Tajima’s D [40], (3) the average pairwise correlation coefficient ZnS [41] as a measure of
linkage disequilibrium, (4) two haplotype-based statistics [42]—the number of haplotypes
calculated by the Depaulis and Veuille K (DVK) and the haplotype diversity measured by
the Depaulis and Veuille H (DVH)—and (5) the Thomson estimator of the time of the most
recent common ancestor (TMRCA) [43] and its variance [44].

In order to estimate the parameters of a demographic scenario involving an expo-
nential growth in the population size, we created simulations of neutral polymorphism
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data. Inferring the demographic history of one population at a time, we generated sets of
500,000 coalescent simulations using msABC [37]. In that framework, every evolutionary
scenario was defined by a set of parameters and every parameter was characterized by a
prior distribution (Table 1). Given the current effective size of a haploid population N0, the
expansion model was characterized by two parameters: the scaled population mutation
rate θ and the rate of exponential expansion α. Therefore, the population size is given by
the following:

N(t) = N0 e−αt (2)

where time t is measured backwards in time in units of 2N0 generations and θ is defined
as 2N0µ for haploid organisms, where µ is the mutation rate per generation [45]. Since
there was no clear evidence that recombination took place within SARS-CoV-2 genomes in
humans, the population recombination rate ρ of all the simulations was set to zero. For each
population, the number of individuals sampled per simulation was equal to the number of
sequences in the multiple sequence alignment.

Table 1. Prior distributions for the demographic parameters.

Parameter
Prior Distribution

Minimum Maximum Distribution

Northern American and European population

θ 100 2000 Log Uniform

α 1 2000 Log Uniform

Asian population

θ 100 3000 Log Uniform

α 1 5000 Log Uniform

The ABC parameter inference was implemented using the R package abc [46]. The
inference procedure consists in retaining simulations for which the Euclidean distance
between the set of simulated summary statistics and the observed set is sufficiently small.
The percentage of accepted simulations is determined by the tolerance value, τ = 0.005. In
order to correct for the discrepancy between the simulated and the observed statistics due
to the nonzero τ, the posterior probability of the parameters was approximated by apply-
ing regression adjustment techniques to the retained simulations. More specifically, we
performed a local linear weighted regression correction to estimate the posterior parameter
probabilities of the American and Asian SARS-CoV-2 populations. In this approach, the
simulated parameters were assigned weights according to how well the corresponding
summary statistics adhered to the observed ones and then a linear regression adjustment
was performed on the accepted, weighted parameters [24]. The parameters were “logit”
transformed prior to estimation, using as boundaries the prior distributions’ minimum
and maximum values that were used during the simulations for each parameter. After
the regression estimation, the parameters were back-transformed to their original scale. A
nonlinear heteroscedastic regression model using a feed-forward neural network model
was utilized in the demographic analysis of the European population [47].

3. Results

We used publicly available sequence data from the GISAID database, downloaded
on 2 April 2020, to infer the evolution of human SARS-CoV-2 strains circulated during
the first wave of the pandemic. All analyses except selective-sweep localization were
performed on this dataset. The initial dataset comprised 3230 full genome assembled
sequences. From those, we kept only the high-coverage sequences (as defined by GISAID,
these sequences contain less than 1% ambiguous states (N’s) and less than 0.05% unique
amino acid mutations, i.e., not seen in other sequences in the database and no insertion-
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deletions unless verified by submitters). In total, 2305 sequences passed this filter. We
applied additional filters to keep only high-quality sequences: First, we trimmed the
ambiguous N’s from both the beginning and the end of the genomes. Then, after trimming,
we kept only sequences with less than 10 ambiguous states (N’s). The final dataset consists
of 1895 human SARS-CoV-2 genomes and two outgroup sequences: the bat CoV (hCoV-
19/bat/Yunnan/RaTG13/2013; accession ID EPI_ISL_402131) and pangolin CoV genomes
(hCoV-19/pangolin/Guangdong/1/2019; accession ID: EPI_ISL_410721). The dataset was
aligned using the MAFFT software v.7.205 [48].

3.1. Estimation of Mutation Rate and Divergence from Bat CoV

We modeled the divergence from the bat CoV genome as a function of the sequence
sampling date. Divergence was estimated using the Kimura80 approach [30,49]. Since the
sampling date was provided by the GISAID database, we were able to perform a regression
analysis of the divergence per site as a function of the sampling date. The slope of the
line represents the increase in divergence per site and per day; thus, it may be used as a
proxy for the mutation rate per site and per day. The estimated mutation rate is 1.87 × 10−6

per nucleotide substitution per site per day (Figure 1). The divergence from the bat CoV
genome is estimated to 0.04 substitutions per site using the Kimura (1980) calculation.
Assuming that the mutation rate is 1.87 × 10−6, the total time since that separates SARS-
CoV-2 from the bat CoV genome is 0.04/1.87 × 10−6 = 58.6 years. Thus, assuming an equal
mutation rate between the bat CoV lineage and the human CoV genome, the time since the
common ancestor between the bat CoV and the SARS-CoV-2 is about 58.6/2 = 29.3 years.
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of sampling date: the slope of the regression line (1.87 × 10−6) reflects the increase in divergence per
site and per day.
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3.2. Recombination Events
3.2.1. Host Analysis

We performed a blast-based analysis using as a (locally constructed) database the
55 fully sequenced Coronaviridae genomes downloaded from NCBI [50] together with
the bat CoV and pangolin CoV genomes from the GISAID database. The query comprises
all the unique 300-mers from the 1895 human SARS-CoV-2 genomes. In total, there are
452,212 unique 300-mers. The word size parameter of blast was set to 10 and the e-value
was set to 0.1 to capture even small parts of the sequence that may resemble parts from the
Coronaviridae family of different hosts. We checked whether the consecutive regions in
a query sequence could match different entries in the local blast database, that is, Coron-
aviridae sequences from different hosts. Then, we estimated all correlation coefficients for
all host pairs to evaluate their tendency to cooccur as a match in the same query sequence
(Figure 2). For example, pangolin and bat cooccur in 395 out of 5568 total cases, resulting
in an r value of 0.4. Such a high cooccurrence may suggest that an ancestral sequence of
a query 300-mer could have experienced a recombination event in these two hosts. We
found plausible past recombination events between CoVs from pangolin (GISAID accession
ID: EPI_ISL_402131) and bat (GISAID accession ID: EPI_ISL_410721), sparrow (RefSeq ID:
NC_016992.1) and Rhinolophus blasii (RefSeq ID: NC_014470.1), and the Human_CoV-HKU1
sequence (RefSeq ID: NC_006577.2) with hedgehog (Erinaceus) (RefSeq ID: NC_006577.2).
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Figure 2. (A) Hosts of the Coronaviridae virus family in which plausible recombination events may have taken place:
red-colored squares denote positive correlation coefficient values and, thus, the cooccurrence of blast results from different
hosts for the same query sequence, suggesting potential recombination events. The blue and white squares denote pairs with
negative or close to zero correlation coefficient. The yellow boxes denote the host pairs with the highest r values: pangolin
(GISAID accession ID EPI_ISL_402131) and bat (GISAID accession ID: EPI_ISL_410721), sparrow (RefSeq ID: NC_016992.1),
and Rhinolophus blasii (RefSeq ID: NC_014470.1), and the human CoV sequence (RefSeq ID: NC_006577.2) with hedgehog
(RefSeq ID: NC_006577.2). Localization of recombination events in the (B) bat/pangolin pair, (C) sparrow/Rhinolophus
pair, and (D) hedgehog/Human_CoV-HKU1.
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3.2.2. Localization of Recombination Events

For the three pairs of hosts depicted in Figure 2, we localized the genomic regions
that may be involved in recombination events. Thus, for all concordant pairs, that is, pairs
corresponding to consecutive matches between a query 300-mer and two different database
entries, we used the genomic coordinates of the non-SARS-CoV-2 host. The density plots
in Figure 2B–D illustrate the distribution of the location in the genome of the host. For the
pangolin/bat pair (Figure 2B), the location of both pangolin and bat fragments are around
the position 23,583, suggesting a plausible recombination event in the highly divergent
Spike protein S1 coding region. On the other hand, the sparrow/Rhinolophus pair shows
different localization from the sparrow and Rhinolophus fragments. The sparrow fragments
are located around the location 3484, whereas the Rhinolophus fragments are located
around the position 28,034. Finally, for the hedgehog/Human_HCoV-HKU1 pair, both
locations are around the position 17,000 (17,062 and 17,088, respectively), within the ORF1b
polyprotein and the helicase/nsp13 coding region.

3.3. Detection of Recombination Events amongst Human SARS-CoV-2 Genomes

Using a similar approach as in “Host analysis”, we assessed whether recombination
events took place between the human SARS-CoV-2 genomes. No recombination event was
detected using the human SARS-CoV-2 genome sequences from the GISAID database until
the date 2 April 2020.

3.4. Linkage Disequilibrium (LD) Analysis

An indirect approach to inferring recombination in a sequence is the decay of LD as a
function of distance. We estimated LD between all sites using the software plink [51], and
we modeled haplotypic LD as a function of distance between two genomic sites using a
simple linear model:

LD = ax + b (3)

where x is the distance. The analysis was performed on the SARS-CoV-2 genomes for
each population separately (Europe, Africa, North America, South America, Oceania,
and Asia). The results for parameters a and b are presented in Table S1. These results
suggest that, for the European, Asian, and total populations, LD decreases as a function
of distance. Thus, recombination may have occurred in SARS-CoV-2 genomes. These
findings are not contradictory to the previous subsection “Detection of recombination
events between the SARS-CoV-2 genomes”. In the previous section, our goal was to detect
the recombination breakpoints and the recombinant sequences (or the descendants of the
recombinant sequences). However, if the sequences are not divergent enough, such an
approach will not reveal the breakpoints. On the contrary, the LD decay approach is more
sensitive to showing that recombination may have occurred (however, it can reveal neither
the recombination breakpoints nor the recombinant sequences). Table S1 shows that, in
the North America, South America, Oceania, and Africa populations, the value of the
slope a is not statistically different from 0, i.e., there is no correlation between the genomic
distance and the LD. This is probably due to the fact that the number of recombination
events that take place in a population is a function of both the recombination rate and
the effective population size (ρ = 4Ner, where Ne is the effective population size and
r is the recombination rate). Since the exponential growth phase started later in these
continents compared to Asia and Europe, it is possible that the effective population size
of the virus was not large enough for recombination to be detected in the North America,
South America, Oceania, and Africa populations.

3.5. Selective Sweeps

Selective sweep analyses were conducted on the dataset downloaded on 31 March 2020
from an early stage of the epidemic. We used SweeD [33] and RAiSD [34] to identify
potential targets of selective sweeps. SweeD implements a CLR test based on the site-
frequency spectrum, while RAiSD evaluates the µ-statistic that relies on multiple sweep
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signatures. Figure S10 illustrates the scores of both tools along the genome when analyzing
1601 SARS-CoV-2 sequences (version 31 March 2020) in the total population and per
continent for Europe, Asia, and North America. The figure also shows the top 5% common
outliers. Given the accuracy granularity of existing sweep detection methods, including
the employed ones in this study, we refrained from identifying specific genomic positions
at site granularity.

Table 2 provides the distinct region pairs that were identified as potential sweep targets.
For the world sample, the first two region pairs are located within the nonstructural protein
3 (nsp3). The third region pair belongs to Spike protein S1, which attaches the virion to
the cell membrane by interacting with a host receptor, thereby initiating the infection. The
highly divergent Spike protein S1 of coronaviruses facilitates viral attachment, fusion,
and entry and thus serves as a target for antibody and vaccine development [52]. The
identified outlier region 23,043–23,073 falls into the receptor-binding domain (RBD), which
has been reported to be optimized as a result of natural selection for binding to human
angiotensin-converting enzyme 2 (ACE2) receptors and consists of a putative target for
designing future therapeutic or preventive strategies [6]. The fourth region pair is in the
spike protein S2.

Table 2. Common-outlier region pairs between SweeD and RAiSD based on a maximal distance of 0.4 kb.

Population (No. of Sequences) SweeD Outlier Region RAiSD Outlier Region Description

All
(1601)

5276–5463 5048–5679 Non-structural protein 3 (nsp3)

7102–7470 7380–7842 Non-structural protein 3 (nsp3)

23,043–23,073 23,440–23,469 Spike protein S1/RBD

24,749–24,773 24,762–24,814 Spike protein S2

Europe
(811)

5094–5352 4695–5089 Non-structural protein 3 (nsp3)

21,520–21,550 21,157–21,339 Non-structural protein 16 (nsp16)

22,463–22,967 22,687–22,852 Spike protein S1

Asia
(385)

7356–7815 7578–8182 Non-structural protein 3 (nsp3)

16,057–17,022 15,925–16,714 nsp12/nsp13

North
America

(600)

8187–8337 7969–8220 nsp3

12,523 12,450–12,923 nsp8/nsp9

13,566–13,691 13,192–13,297 nsp12/nsp10

15,147–15,201 15,248–15,383 nsp12

23,166 23,398–23,427 Spike protein S1

3.6. Summary Statistics along the SARS-CoV-2 Genome

We estimated the values of several summary statistics (Figure 3) commonly used in
population genetics studies along the genome of SARS-CoV-2: (i) Watterson’s estimate [38]
of θ value (the population mutation rate); (ii) θπ [39], i.e., the average number of pairwise
differences in the sampled sequences, which is another estimate of θ; (iii) Tajima’s D [40], a
commonly used neutrality test that receives negative values typically in cases of population
expansion and/or recent strong positive selection; (iv) Wall’s B and Wall’s Q [53], which
are related to the recombination rate; (v) the divergence to the bat sequence using a random
SARS-CoV-2 genome and the average divergence from the bat Coronavirus sequence using
all SARS-CoV-2 genomes; and (vi) the Depaulis and Veuille K and H statistics [42], which
denote the number of haplotypes and the haplotype heterozygosity, respectively. The
region around position 23,000 (Spike protein S1/RBD) is characterized by large divergence,
low Tajima’s D, and high values of Wall’s B and Q. The divergence values (high) and the
Tajima’s D values (low) suggest that it may be a target of recent positive selection. The
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value of θW is high, which is due to the excessive number of singletons in the region since
θπ does not receive very high values. This result is consistent with positive selection, even
though we cannot exclude artifacts from sequencing errors or more complex evolutionary
phenomena (e.g., recombination with another host). Another probable explanation is that
selective sweep is ongoing. Thus, several low-frequency polymorphisms remain with
decreasing Tajima’s D and high values for θW.
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3.7. Estimation of the Time of the Most Recent Common Ancestor

We used all samples to estimate the mean and the variance of the parameter t (Figure S2).
The mean parameter value estimation was test = 47.0, and the variance was Vest = 504.45.
Figure S2B depicts the histogram, density, and the mean value for the parameter t, the time
of the most recent common ancestor measured in days before the first Wuhan sample (24
December 2019). The estimated value of t suggests that the most recent common ancestor
of SARS-CoV-2 genomes is older (47 days) than the first reported case, dating the TMRCA
to November 7th, 2019. Even though it is reasonable that the first case is dated earlier
than the first reported case, here, we cannot know whether the TMRCA refers to a human
sample or another host (e.g., bat).
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3.8. Demographic Inference

Exploring the demographic dynamics of SARS-CoV-2 populations is important in
understanding the magnitude of the spread of the ongoing COVID-19 pandemic. Here, we
focused on the SARS-CoV-2 sequences of Asian, European, and Northern American human
cohorts, and we employed an approximate Bayesian computation (ABC) approach to model
the exponential growth of the three SARS-CoV-2 populations. For each population, the
parameter inference procedure involves the estimation of the posterior distributions of two
parameters: the scaled population mutation rate θ and the rate of exponential expansion α.
In this model of population growth, the population size is given by N(t) = N0 e−at, where
time t is measured backwards in time in units of 2N0 generations and θ is defined as 2N0µ
for haploid organisms, where µ is the mutation rate per generation and N0 the present-day
effective population size [45].

For each population under study, ABC employs stochastic coalescent simulations
to estimate the properties of the parameters’ posterior distributions. The parameter in-
ference procedure consists in retaining only the best τ of the simulations, i.e., τ of the
simulated datasets, which are closest to the observation (Figures S3–S5). Visualization of
the percentage of accepted simulations that was determined with a tolerance value of 0.005
(Figures S6–S8) in a contour plot demonstrates how these simulations explore the space
around the observed data. The summary statistics form an 8-dimensional space. For some
statistics (i.e., dimensions), the contour lines diverge from the observed value because the
algorithm only retains the simulations that minimize the 8-dimensional Euclidean distance
to the observed vector. Thus, even if the distance is minimized over all dimensions, this
may not be true for each dimension separately. For example, the posterior distributions
of Tajima’s D and DVK of the European population, in particular, show that the accepted
values (within the tolerance τ) are quite distant from the observed value. Specifically,
Tajma’s D and DVK are affected by low-frequency-derived variants, especially singletons.
Tajima’s D becomes negative and DVK assumes large values in the presence of singletons
since the number of haplotypes increases. In the SARS-CoV-2 dataset, a large proportion of
polymorphisms (>70%) are singletons, which results in extreme negative values of Tajima’s
D. Such a proportion of singletons is difficult to explain with a simple demographic model
of population expansion alone. It is possible that other factors (e.g., sequencing errors and
more complex demographic models) have contributed to such an observation.

An improvement to the simple rejection ABC algorithm was employed to correct for
the discrepancy between the simulated and the observed statistics. The posterior probabil-
ity of the parameters was approximated by applying regression adjustment techniques to
the retained simulations. More specifically, we performed a local linear-weighted regres-
sion correction to estimate the posterior parameter probabilities of the American and the
Asian SARS-CoV-2 population, while a nonlinear regression model using feed-forward
neural networks was utilized in the demographic analysis of the European population.
This correction influenced our estimates, reducing the variance of the posterior estimates
(Figure 4). The inferred mean, median, and mode values as well as quantile values are
shown in Table 3. Both α and θ values are higher in the Asian and North American popu-
lations than the European population. This suggests that population growth was faster
in Asia and North America compared to the European population. Also, since θ = 2N0µ
(N0 is the present day population size for each population) is higher for the Asian and
North American populations, it suggests that N0 is higher in Asia and North America
than Europe. We note that N0 is different from the effective population size: the effective
population size Ne represents a long-term ideal population size while N0 refers only to
the present. Furthermore, we note that, a posteriori, the two parameters α and θ are cor-
related (Figure S9). Thus, the likelihood surface may have multiple local optima and the
inference process may result in different optima (and, therefore, parameter estimates) in
different populations.
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Figure 4. Probability estimations of (A) North America’s, (B) Europe’s, and (C) Asia’s SARS-CoV-2
population expansion parameters. Grey curve: prior parameter distribution; blue curve: density
distribution of the approximate Bayesian computation (ABC)-unadjusted simulation values that were
accepted with a tolerance of 0.005; and red curve: posterior distribution approximated by applying
regression correction to the retained simulations.

Table 3. Summary statistics of the posterior distributions that were estimated by ABC for each
SARS-CoV-2 population.

North America Asia Europe

α θ α θ α θ

Weighted Mean 2.5% Percentile 1299.12 235.37 12.91 523.95 19.26 211.95

Weighted Median 1500.96 709.24 2310.46 794.61 26.21 255.9

Weighted Mean 1509.05 717.89 2508.8 807.84 26.85 260.3

Weighted Mode 1507.6 733.87 4869.54 738.66 24.81 241.78

Weighted Mean 97.5%
Percentile 1766.13 1300.2 4999.94 1147.67 38.63 333.24

4. Discussion

Population genetics approaches provide valuable insights into the evolutionary dy-
namics of the first wave of the COVID-19 pandemic. The mutation rate of the SARS-CoV-2
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genome was inferred to be 1.87 × 10−6 nucleotide substitutions per site per day. This
estimation is in line with other studies [54,55] as well as with what has been previously
reported for SARS-CoV-1 (0.80 to 2.38 × 10−3 per site and per year, i.e., 2.24–6.68 × 10−6

per site and per day) and for other CoVs [56–58]. We further estimated that the TMRCA
of the SARS-CoV-2 genomic sequences dates back to November 7th, 2019. Our TMRCA
calculation comes in close proximity to recently published results [59], employed a molecu-
lar clock analysis, and assessed the TMRCA of the human outbreak to 25 November 2019
(95% highest posterior density (HPD) region: 28 September 2019; 21 December 2019). More
recently, Liu and colleagues [55] presented a robust estimator of the mutation rate and the
TMRCA that bypasses the effect of certain biases, such as sampling biases and existence of
infection clusters during the epidemic spread. We reckon that our methodology also pro-
vides a similar estimate of those parameters, as the inferred values are similar to the results
of [55]. Overall, those findings slightly differ with results from the application of Bayesian
Markov Chain Monte Carlo (MCMC) approaches on data from the early outbreak [60] that
propose a higher mutation rate (mean value of 6.14 × 10−6 substitutions per site per day),
resulting in a more recent estimate of the TMRCA, on 11 December 2019.

In terms of recombination events, our analysis revealed a plausible past recombi-
nation between animal CoVs from pangolin and bat, which has been also confirmed by
similar analyses (i.e., Simplot and Recombination Identification Program (RIP) tool for
recombination detection) [17,22,23]. Interestingly, we uncovered possible recombination
events between sparrow and Rhinolophus blasii (bat), and the hCoV-HKU1 genome with
hedgehog (Erinaceus), shedding light on another possible scenario about the origins of
SARS-CoV-2. Localization of the pangolin and bat fragments were found around the
position 23,583 inside the Spike protein S1 coding region, not surprisingly since the Spike
region in Coronaviruses is known to be prone to recombination events, often including
recombination hotspots [61]. Moreover, recently, Makarenkov et al., using a gene-by-
gene phylogenetic-based approach, reported a detailed list of recombination events in the
11 ORFs of the SARS-CoV-2 genome. Similar to our analysis, they detected a recombination
event between the RaTG13 and Pangolin CoVs in the Spike protein S1 [12]. In addition,
they found evidence for between-species recombination in other genomic regions (e.g., the
ORF1ab, S, ORF3a, ORF7a, ORF8, and N). A plausible explanation is that a phylogenetic-
based analysis is more sensitive than a blast-based analysis. Similarly, Boni et al. [13]
reported that SARS-CoV-2 shows frequent recombination in its evolutionary history, and
they underlined its importance for the generation of the novel SARS-CoV-2 genomes.
Additionally, they reported that such recombination events are old and that there is no evi-
dence for very recent recombination events. However, in contrast to our and Makarenkov
et al.’s analyses, their results indicate a single ancestral lineage circulating in horseshoe
bats undergoing a complex recombination history. Interestingly, the sparrow/Rhinolophus
pairs are localized differently from the sparrow and Rhinolophus fragments. The sparrow
fragments are located around the location 3484, whereas the Rhinolophus fragments are
located around the position 28,034. Thus, it is probable that an ectopic recombination event
between ORF1a and ORF8 took place, since it is common for viruses to exchange genetic
material in a nonreciprocal manner [11] even though we cannot exclude the possibility of
a false positive result. The hedgehog/Human_HCoV-HKU1 pair locations, around the
position 17,000, remained within the ORF1b non-structural polyprotein and the possible
drug target helicase/nsp13 coding region [62].

In addition, we localized the action of positive selection by detecting selective sweeps
in order to explore putative adaptive genetic regions of the SARS-CoV-2 genome. One of
the positively selected sites is located inside the non-structural protein 3 (nsp3), which
is a large multidomain and multifunctional protein that plays a key role in coronavirus
replication. Previous studies reported that the nsp3 represents a preferential selection
target in MERS-CoV and lineage C betaCoVs [63], and more recent results support our
findings and indicated that this region is quickly evolving in coronaviruses [64,65]. The
third region pair was found to show positive selection belonging to Spike protein S1,
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which attaches the virion to the cell membrane by interacting with a host receptor, thereby
initiating the infection. The highly divergent Spike protein S1 of coronaviruses facilitates
viral attachment, fusion, and entry and thus serves as a target for antibody and vaccine
development [52]. The identified outlier region 23,043–23,073 falls into the receptor-binding
domain (RBD) and has been reported to be optimized as a result of natural selection for
binding to human angiotensin-converting enzyme 2 (ACE2) receptors and to consist of a
putative target for designing future therapeutic or preventive strategies [6]. This finding
is in line also with the Cagliani’s results as well as other data [66]. The fourth region pair
selected is in the spike protein S2, which mediates the fusion of the virion and cellular
membranes by acting as a class I viral-fusion protein found also to be putative selective in
previous analyses [64,65]. Even though some studies support that the signature of positive
selection is weak at the early stages of the epidemic [67], our selective sweep detection
method using SweeD and RAiSD shows that analyses in early sequences are able to detect
positive selection. Similar analyses with different methods show a low ability to detect
diversifying selection [68]. Our study revealed that strong positive selection was detectable
in the early stages of the pandemic. Notably, these regions are of particular interest as they
are more likely to reflect a functional change and vaccine putative targets, which may help
early detection.

Finally, exploring the demographic dynamics of SARS-CoV-2 populations is important
in understanding the magnitude of the spread of the COVID-19 pandemic. Past changes in
the size of a population typically leave a signature on the SNP patterns of a present-day
alignment. Our preliminary analysis on population genetics statistics provided an informa-
tive summary of the genetic diversity in our samples. An excess of low-frequency variants
results in notably lower values of the average pairwise differences between sequences (θπ)
compared to the (normalized) number of SNPs (θW). For this reason, Tajima’s D appears to
be skewed towards negative values and suggests an expansion in population size. This
observation is in good agreement with previous findings, where a negative Tajima’s D was
estimated from SARS-CoV-2 genomes [55], indicating a population expansion [69]. We
therefore employed an ABC approach to estimate the exponential growth rate of SARS-
CoV-2 sequences originated from Asian, European, and Northern American human cohorts
during the months of the first wave.

5. Conclusions

To conclude, our study suggests that (i) plausible past recombination events between
CoVs from pangolin and bat have contributed in the early evolution of SARS-CoV-2, as has
been previously reported by several other studies, and additionally, we report evidence for
additional recombination events that involve coronavirus genomes from other hosts, i.e.,
hedgehog and sparrow; (ii) the SARS-CoV-2 genomic mutation rate is relatively low and
was inferred to be 1.87 × 10−6 nucleotide substitutions per site per day, which is in line
with several other studies as well as with what has been previously reported for BetaCoVs;
(iii) in the European, Asian, and North American regions, the SARS-CoV-2 populations
have accumulated an exponential growth during the first wave of the pandemic, which can
support the observed polymorphism patterns in human SARS-CoV-2 genomes; and (iv)
two regions within the spike and the nsp3 genes show evidence for recent positive selection.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-1
729/11/2/129/s1, Figure S1: Identifying recombination events in SARS-CoV-2 genome data: all
unique 300-mers from human SARS-CoV-2 sequences (seq1, seq2, seq3, and seq4) were aligned as
a blast query against all available CoV sequences (blast database) from other species (bottom part
of the figure). Recombination is detected if, around a location (here, denoted as “recombination
position”) on the reference genome (black horizontal line on the top), there are 300-mers for which
the left part (blue color) matches species A CoV whereas the right part (red color) matches species B
CoV, Figure S2: The parameter t denotes the time of the most recent common ancestor as estimated
in units of days prior to 24 December 2019, the collection date of the first Wuhan sample that was
reposited in GISAID., Figure S3: ABC parameter inference for the European population based on
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a set of 8 summary statistics. Orange line: Observed value of each summary statistic; grey curve:
density curve of the summary statistics calculated from the whole simulation space; and blue curve:
density estimation of the ABC-accepted summary statistics that were determined with a tolerance τ

= 0.005, Figure S4: ABC parameter inference for the Asian population based on a set of 8 summary
statistics. Orange line: observed value of each summary statistic; grey curve: density curve of the
summary statistics calculated from the whole simulation space; and blue curve: density estimation
of the ABC-accepted summary statistics that were determined with a tolerance τ = 0.005, Figure
S5: ABC parameter inference for the Northern American population based on a set of 8 summary
statistics. Orange line: observed value of each summary statistic; grey curve: density curve of the
summary statistics calculated from the whole simulation space; and blue curve: density estimation
of the ABC-accepted summary statistics that were determined with a tolerance τ = 0.005, Figure S6:
The space of the ABC-accepted simulations of the European population: the contour lines on the
scatterplot indicate the density estimation, Figure S7: The space of the ABC-accepted simulations
of the Asian population: the contour lines on the scatterplot indicate the density estimation, Figure
S8: The space of the ABC-accepted simulations of the Northern American population: the contour
lines on the scatterplot indicate the density estimation, Figure S9: Correlation of Asia’s population
α and θ parameters of the ABC-accepted simulations (unadjusted values): the Pearson correlation
coefficient is 0.95, Figure S10: Common outliers between SweeD and RAiSD (top 0.05): (A) world
sample (1895 genomes), (B) Europe (811 genomes), (C) Asia (385 genomes), and (D) North America
(600 genomes); Table S1: Linkage disequilibrium linear model results: with bold face fonts, we denote
the populations characterized by p-values < 0.01 for the a parameter (the slope of the linear model).

Author Contributions: Conceptualization, A.B. and P.P.; software, M.V., N.A. and P.P.; writing—
original draft preparation, M.V., N.A. and J.G.; writing—review and editing, all authors; supervision,
P.P.; funding acquisition, M.V., N.A. and P.P. All authors have read and agreed to the published
version of the manuscript.

Funding: M.V. was supported by the HFRI-1996 grant from the Greek General Secretary of Research
and Technology. This research was partially supported by a FORTH-Synergy-Grant to P.P. and N.A.
The extension of software RAiSD was funded by the grant POLITEIA II.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All submitters of data may be contacted directly via www.gisaid.org
(accessed on 5 February 2021).

Acknowledgments: We gratefully acknowledge the authors, and the originating and submitting
laboratories of the sequences from GISAID’s EpiFlu™ Database on which this research is based. A
table of the contributors is available in Dataset S1. We acknowledge support of this work by the
project “ELIXIR-GR: Hellenic Research Infrastructure for the Management and Analysis of Data from
the Biological Sciences” (MIS 5002780) which is implemented under the Acton “Reinforcement of the
Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness,
Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European
Union (European Regional Development Fund).

Conflicts of Interest: All authors declare no conflict of interest.

References
1. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected

with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory

syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [CrossRef]
3. Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.;

Chen, M.H.; et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003,
300, 1394–1399. [CrossRef]

4. Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a
man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [CrossRef]

5. Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al.
First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [CrossRef]

www.gisaid.org
http://doi.org/10.1016/S0140-6736(20)30183-5
http://doi.org/10.1038/s41564-020-0695-z
http://doi.org/10.1126/science.1085952
http://doi.org/10.1056/NEJMoa1211721
http://doi.org/10.1056/NEJMoa2001191


Life 2021, 11, 129 17 of 19

6. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020,
26, 450–452. [CrossRef]

7. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from
patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef]

8. Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893.
[CrossRef] [PubMed]

9. Moya, A.; Holmes, E.C.; González-Candelas, F. The population genetics and evolutionary epidemiology of RNA viruses.
Nat. Rev. Microbiol. 2004, 2, 279–288. [CrossRef]

10. Combelas, N.; Holmblat, B.; Joffret, M.-L.; Colbère-Garapin, F.; Delpeyroux, F. Recombination between Poliovirus and Coxsackie
A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence. Viruses 2011, 3, 1460–1484. [CrossRef]

11. Pérez-Losada, M.; Arenas, M.; Galán, J.C.; Palero, F.; González-Candelas, F. Recombination in viruses: Mechanisms, methods of
study, and evolutionary consequences. Infect. Genet. Evol. 2015, 30, 296–307. [CrossRef]

12. Makarenkov, V.; Mazoure, B.; Rabusseau, G.; Legendre, P. Horizontal gene transfer and recombination analysis of SARS-CoV-2
genes helps discover its close relatives and shed light on its origin. BMC Ecol. Evol. 2021, 21, 5.

13. Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.-Y.; Perry, B.; Castoe, T.; Rambaut, A.; Robertson, D.L. Evolutionary origins of the
SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. bioRxiv 2020. [CrossRef]

14. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]

15. Liu, P.; Chen, W.; Chen, J.P. Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (manis
javanica). Viruses 2019, 11, 979. [CrossRef]

16. Lam, T.T.-Y.; Shum, M.H.-H.; Zhu, H.-C.; Tong, Y.-G.; Ni, X.-B.; Liao, Y.-S.; Wei, W.; Cheung, W.Y.-M.; Li, W.-J.; Li, L.-F.; et al.
Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv 2020. [CrossRef]

17. Touati, R.; Haddad-Boubaker, S.; Ferchichi, I.; Messaoudi, I.; Ouesleti, A.E.; Triki, H.; Lachiri, Z.; Kharrat, M. Comparative
genomic signature representations of the emerging COVID-19 coronavirus and other coronaviruses: High identity and possible
recombination between Bat and Pangolin coronaviruses. Genomics 2020. [CrossRef]

18. Flores-Alanis, A.; Sandner-Miranda, L.; Delgado, G.; Cravioto, A.; Morales-Espinosa, R. The receptor binding domain of SARS-
CoV-2 spike protein is the result of an ancestral recombination between the bat-CoV RaTG13 and the pangolin-CoV MP789. BMC
Res. Notes 2020, 13, 398. [CrossRef]

19. Karamitros, T.; Papadopoulou, G.; Bousali, M.; Mexias, A.; Tsiodras, S.; Mentis, A. SARS-CoV-2 exhibits intra-host genomic
plasticity and low-frequency polymorphic quasispecies. J. Clin. Virol. 2020, 131, 104585. [CrossRef] [PubMed]

20. Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary
analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event.
Infect. Genet. Evol. 2020, 79, 104212. [CrossRef]

21. Gallaher, W.R. A palindromic RNA sequence as a common breakpoint contributor to copy-choice recombination in SARS-COV-2.
Arch. Virol. 2020, 165, 2341–2348. [CrossRef]

22. Lau, S.K.P.; Luk, H.K.H.; Wong, A.C.P.; Li, K.S.M.; Zhu, L.; He, Z.; Fung, J.; Chan, T.T.Y.; Fung, K.S.C.; Woo, P.C.Y. Possible Bat
Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1542–1547. [CrossRef]

23. Li, X.; Giorgi, E.E.; Marichannegowda, M.H.; Foley, B.; Xiao, C.; Kong, X.-P.; Chen, Y.; Gnanakaran, S.; Korber, B.; Gao, F.
Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. Adv. 2020, 6. [CrossRef]

24. Beaumont, M.A.; Zhang, W.; Balding, D.J. Approximate Bayesian computation in population genetics. Genetics 2002, 162, 2025–2035.
25. Vijaykrishna, D.; Smith, G.J.D.; Zhang, J.X.; Peiris, J.S.M.; Chen, H.; Guan, Y. Evolutionary insights into the ecology of coron-

aviruses. J. Virol. 2007, 81, 4012–4020. [CrossRef]
26. Maynard Smith, J.; Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 1974, 89, 391–403. [CrossRef]
27. Stephan, W.; Wiehe, T.H.E.; Lenz, M.W. The effect of strongly selected substitutions on neutral polymorphism: Analytical results

based on diffusion theory. Theor. Popul. Biol. 1992, 41, 237–254. [CrossRef]
28. Kim, Y.; Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002, 160, 765–777.
29. GISAID—Initiative. Available online: https://www.gisaid.org/ (accessed on 4 February 2020).
30. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide

sequences. J. Mol. Evol. 1980, 16, 111–120. [CrossRef]
31. Kimura, M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations.

Genetics 1969, 61, 893–903. [CrossRef] [PubMed]
32. Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38, 226–231. [CrossRef]
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