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Abstract—Prediction of protein structural classes from amino
acid sequences is a challenging problem as it is profitable for
analyzing protein function, interactions, and regulation. The ma-
jority of existing prediction methods for low-homology sequences
utilize numerous amount of features and require an exhausting
search for optimal parameter tuning. To address this problem,
this work proposes a novel self-tuned architecture for feature
extraction by modeling directly the inherent dynamics of the
data in higher-dimensional phase space via chaos game repre-
sentation (CGR) and generalized multidimensional recurrence
quantification analysis (GmdRQA). Experimental evaluation on
a real benchmark dataset demonstrates the superiority of the
herein proposed architecture when compared against the state-of-
the-art unidimensional RQA taking under consideration that our
method achieves similar performance in a data-driven manner
with a smaller computational cost.

Index Terms—Protein structure prediction, chaos game rep-
resentation, multidimensional recurrence quantification analysis,
nonlinear time series analysis

I. INTRODUCTION

Protein structure prediction is one of the most signifi-
cant and challenging problems in bioinformatics, as it has a
prominent role in understanding the function and evolution of
proteins. Acquiring knowledge of the dynamics and properties
that force each protein into a unique 3D structure is highly
important and useful in medicine and biotechnology for drug
design, enzymes composition, interpretation of disease-related
phenotype, etc. [1]. In essence, the biological function of
a protein is associated with its tertiary structure, which is
determined by its amino acid sequence via the process of
protein folding [2]. Along these lines, the tertiary protein
structure can be classified into four structural categories based
on the protein’s folding patterns known as (i) all α-fold,
in which are classes of structural domains that are mainly
composed of α-helices and only a little amount of β-strands
(a.k.a. β-sheets), (ii) all β-fold, that is mostly formed by β-
strands and a few isolated α-helices, (iii) the α + β-fold,
forming helices and mostly β anti-parallel strands, and the
(iv) α/β-fold, that consists of helices and almost all parallel
strands [3].

In the last decade, a plethora of machine learning based
algorithms has been developed for the protein structural class
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prediction. Some widely used methods for extracting mean-
ingful features to represent protein samples are the amino
acid composition [4], the pseudo-amino acid composition [5],
the dipeptide and tripeptide compositions [6], the PSI-BLAST
profile [7] and the predicted secondary structure informa-
tion [8], among others. However, the performance of these
techniques is less significant when low-similarity proteins are
encountered. Hence, a lot of effort has been made to improve
the prediction accuracy for low-homology proteins [9]–[14]
with numerous studies [15]–[18] demonstrating the potential
of using chaos game representation (CGR) [19] along with
recurrence quantification analysis (RQA) [20]. In particular,
CGR is a method of converting a long unidimensional se-
quence into a graphical form where the x- and y-coordinates of
each point on this graph are considered as two individual time
series. The RQA is a powerful non-linear analysis tool, capable
of dealing with non stationary time-series of varying lengths
while extracting several features. Although the combination of
the aforementioned methods leads to high-precision results,
their enhanced performance comes at the expense of time
and memory complexity. This is mainly because (i) a pair
of coordinates has to be processed separably resulting in
large number of features and (ii) the fine-tuning of the RQA
parameters for each time-series is highly demanding.

To overcome these limitations, we propose (i) the gen-
eralized multidimensional recurrence quantification analysis
(GmdRQA) [21] as a sophisticated, non-linear analysis of the
multidimensional time series data that allows us to exploit both
the intra- and inter-data correlations in an automated fashion
and (ii) a data-driven fine-tuning (DDFT) of the GmdRQA
parameters based on the Average Mutual Information (AMI)
and the False Nearest Neighbors (FNN) methods. To the best
of our knowledge, there is no prior work in the literature that
employs multidimensional recurrence quantification analysis
for the protein structural class prediction especially in an
automatic parameter selection. The contributions of this paper
are summarized below:

(i) The design of a novel protein structural class prediction
scheme that combines CGR and a unidimensional data-
driven fine-tuned RQA (DDFT-1DRQA).

(ii) The design of a protein structural class prediction scheme
that combines CGR and a multidimensional grid search
tuned RQA (GS-GmdRQA).
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(a) Chaos Game Representation
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(b) Time series tx
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Fig. 1: (a) Chaos Game Representation of protein’s 1ASH predicted secondary structure based on the three secondary structural
elements, C (coil), E (strand) and H (helix). (b),(c) Time series representation of 1ASH protein based on CGR.

(iii) The design of a novel protein structural class prediction
scheme that combines CGR and data-driven fine-tuned
GmdRQA (DDFT-GmdRQA).

The rest of the paper is organized as follows: Section II is
an overview of the dataset employed by our study. Section
III is an introduction to CGR, GmdRQA and the data-driven
parameter-tuning algorithms, namely AMI and FNN. Section
IV evaluates the performance of the proposed schema to the
state-of-the-art in terms of classification accuracy using sup-
port vector machines (SVM) and Fisher’s linear discriminant
algorithm (FDA). Finally, Section V draws the conclusion of
this work and gives directions for future extensions.

II. DATASET DESCRIPTION

This work employs the 25PDB dataset [22] that includes
1673 proteins of varying length with 25% sequence homology.
The proteins are categorised based on their structural class
with 443 of them belonging to α-fold, 443 to β-fold, 346 to
α/β-fold and 441 to α+ β-fold. Each protein is a long chain
called polypeptide or polymer, which is formed when several
monomers, known as amino acids, are joined together. Only
20 amino acids are known as proteinogenic, meaning they
participate in the synthesis of a protein primary structure. In
the literature, there are several works [16]–[18] that instead of
dealing with the protein primary structure they use the PSI-
PRED tool [23] that predicts the role of each amino acid in
the protein secondary structure. Particularly, PSI-PRED trans-
forms the initial amino acid sequence to a sequence of equal
length that now consists of only three states that describe its
secondary structure, namely coils (C), strands (E) and helices
(H). This simplification not only reduces the dimensionality
of our data from 20 amino acids to three structural elements
but also the overall computational complexity. Hence, in this
work we have decided to use as input data the prediction of
the protein secondary structure.

III. METHODS

A. Chaos Game Representation

In order to transform a unidimensional sequence of sec-
ondary structural elements into a two-dimensional time se-

ries, Chaos Game Representation (CGR) is employed. More
specifically, the sequence of a protein secondary structure
is represented in a unit equilateral triangle with its vertices
referring to the three secondary structure elements H, C,
and E, with xy-plane coordinates (0,0), (0.5,

√
3/2) and (1,0),

respectively. Then, the triangle centroid is defined at position
(0.5,
√

3/6) while the first element of the sequence is calculated
as the halfway distance point between the centre of the triangle
and the vertex representing this element. Accordingly, the
remaining consecutive elements in the sequence are plotted as
the midpoint between the previous plotted point and the vertex
representing the element being plotted as given in Eq.1,

(xi, yi) =
(xi−1 + vix

2
,
yi−1 + viy

2

)
(1)

where vix and viy are respectively the x and y coordinates of
the vertices corresponding to the secondary structure element
at position i in the sequence. The resulted graph is given in
Fig. 1(a). Finally, as depicted in Fig.1 (b) and (c), the CGR
graph is decomposed into two time series that consist accord-
ingly of the x and y coordinates that CGR algorithm produced
so that tx = (x1, x2, . . . , xn) and ty = (y1, y2, . . . , yn), where
n is the number of elements in the sequence.

B. Generalized Multidimensional Recurrence Quantification
Analysis

Multidimensional recurrence quantification analysis extracts
in general the underlying dynamics of the system by mapping
the time series in a higher-dimensional phase space of trajec-
tories by constructing state vectors via time delay embedding.
The GmdRQA framework introduced in [21], transforms state
vectors into state matrices in order to represent the time-
delay embedding, since state matrices are considered more
appropriate for describing multidimensional signals from a
mathematical perspective, enabling them to model the cor-
relations not only within a signal but also between different
signals. Their experimental evaluation on real data revealed the
superiority of GmdRQA framework, when compared against
its vector-based counterpart, in terms of classification accuracy
and robustness to noise.
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More specifically, given a multidimensional time series r
of length N the corresponding phase space representation is
reconstructed as follows,

u1

u2

...
uNs

 =


w1,1 w2,1 · · · wD,1

w1,2 w2,2 · · · wD,2

...
... · · ·

...
w1,Ns

w2,Ns
· · · wD,Ns

 , (2)

where D is the number of dimensions of the data, wi,j =

(r
(i)
j , r

(i)
j+τ , . . . , r

(i)
j+(m−1)τ ), i = 1, . . . , D, j = 1, . . . , Ns,

with m being the embedding dimension, τ the delay and
Ns = N − (m − 1)τ the number of states. The state
vectors uj can be transformed into state matrices of the form
Xj = (w1,j ,w2,j , . . . ,wD,j)

T .
In the herein work, the dimensionality of the data is two,

based on the CGR analysis mentioned in Section III-A. Thus,
GmdRQA is directly applied on the respected two dimensional
time series.

Recurrence plots (RPs) [20] have been proposed as an ad-
vanced graphical technique of visual non-linear data analysis,
which reveals all the times of recurrences, that is, when the
phase space trajectory of the dynamical system visits roughly
the same area in the phase space. Accordingly, the generalized
multidimensional recurrence plot (GmdRP) is defined by

GmdRi,j = Θ (ε− ||Xl −Xk||F ) , (3)

where k, l = 1, . . . , Ns, ε is a threshold, ||·||F is the Frobenius
norm between state matrices, and Θ(·) is the Heaviside step
function whose discrete form is defined by,

Θ(n) =

{
1, if n ≥ 0

0, if n < 0
, n ∈ R . (4)

The visual interpretation of RPs, which is often difficult
and subjective, is enhanced by means of several numerical
measures for the quantification of the structure and complexity
of RPs. In this work the following 10 measures are utilized
in order to later form our feature matrix (ref. [24] for the
mathematical definitions):

• Recurrence rate: Measures the density of points in the
RP or in other words, the probability that a similar state
recurs to its neighbourhood in phase space.

• Determinism: The ratio of the number of recurrence
points forming diagonal structures to the total number
of recurrence points is regarded as determinism or pre-
dictability of the system.

• Average diagonal length: Refers to the mean time that
the next recurrence of states can predicted from the state
that is now observed. These lines indicate how different
trajectories diverge during the evolution of the system and
as time passes by.

• Length of longest diagonal/vertical line: Refers to the
maximum length of the diagonal/vertical lines in the
recurrence plot that represent the maximum time that the
system evolves or remains in a certain state respectively.

• Entropy of diagonal/vertical length: Indicates the com-
plexity of the recurrence plot in respect of the diago-
nal/vertical lines. The entropy of vertical lines reflects the
distribution of time-periods for which the system abides
in laminar phases.

• Laminarity: Provides information about the occurrence
of the laminar states in the system. However, it does not
describe the length of the laminar states.

• Trapping time: The average length of vertical lines is
called trapping time and it is related with laminarity time.
This value contains information about the frequency and
the length of laminar states.

• Size of the phase space: Refers to the number of states
created via time delay embedding.

IV. PERFORMANCE EVALUATION

The herein work proposes three novel architectures for
feature extraction and classification that combine CGR and
RQA. Namely, a unidimensional RQA scheme with data-
driven parameter selection, a multidimensional RQA scheme
with a grid search of parameters and finally a multidimensional
protein structural class prediction scheme with a data-driven
parameter selection. Moreover, the case of parameter selection
with GmdRQA is also evaluated in a grid search manner (GS-
GmdRQA). The overall architecture of the proposed protein
structure prediction frameworks that are implemented in MAT-
LAB, on a desktop computer equipped with a CPU processor
(Intel Core i5-4590) clocked at 3.30GHz, and a 8 GB RAM.

A. Estimation of RQA parameters

As stated in [15]–[18] parameters such as τ and m are
chosen through an exhausting grid search manner. In this
study grid search of parameters is also employed in terms
of fair comparison to the literature, however another more
efficient approach is suggested. Characteristically, the optimal
parameter estimation is performed in an automated fashion
for each protein sequence separately. Specifically, the optimal
time delay τ is estimated as the first minimum of the AMI
function averaged over all the dimensions in the data [25].
In the implementation of AMI max lag is set to 10 and the
number of bins for calculating the histogram is 10. Concerning
the embedding dimension m, a minimal sufficient value is
estimated using FNN [26]. In particular, the optimal m is
reached when one of the following conditions is satisfied: i)
FNN drops to 0, ii) sequential embeddings have the same
number of false neighbors, iii) the point before which the
number of FNNs starts to increase again, iv) the point where
the difference between the number false neighbors is less than
a threshold Ttol. Based on the dataset employed in this work,
optimal Ttol = 2%. For proteins of length lower than 45 time
delay embedding parameters are set to τ = 1 and m = 2,
respectively.

Concerning the neighborhood threshold ε, following the
empirical rule proposed in [27] it is given as a percentage of
the distribution of all the pairwise distances that describe the
phase space trajectory. Specifically, the average classification
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accuracy as a function of the neighborhood threshold ε for both
DDFT-1DRQA and DDFT-GmdRQA using SVM and FDA
classifier is depicted in Fig. 2. Both approaches achieve higher
average overall accuracy when the percentage lies between
20%-50% for SVM and FDA as well as. The variation is
roughly the same. Hence, we select the percentage of ε to
be 30% for DDFT-1DRQA and DDFT-GmdRQA. This rule
also applies in the case of time delay embedding parameters
estimation using a grid search approach.
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Fig. 2: Mean classification accuracy as function of the per-
centage of the neighborhood threshold ε for DDFT-1DRQA
and DDFT-GmdRQA with SVM and FDA.

B. Classification

In this analysis, data are split into 70%-30% for training
and testing, respectively. Each experiment is repeated 150
times, and the average overall accuracy is reported. Initially,
the feature matrix is z-score normalized. Then, the perfor-
mance of each architecture is evaluated by employing two
well known classifiers independently. Particularly, a Gaussian-
kernel support vector machine (SVM) as well as Fisher’s
Linear Discriminant Analysis (FDA) are applied separately on
the normalized feature matrix for discriminating between the

four structural classes α-fold, β-fold, α/β-fold and α+β-fold.
The regularization parameter C and kernel width parameter γ
can take all positive values log-scaled in the range [10−3, 103].

C. Evaluation results

As proposed in the state-of-the-art, when DDFT-GmdRQA
is performed separately in each unidimensional time series
results in the DDFT-1DRQA architecture. The optimal set of
parameters is evaluated in an automated fashion, using FNN
and AMI, in each of the two time series and 20 features (10
features×2 dimensions) are extracted in total. Table I indicates
the performance of the proposed DDFT-1DRQA against the
state-of-the-art in terms of average overall classification accu-
racy. As shown, the automated selection of optimal parameters
for each one of the proteins slightly increases the overall
classification accuracy for both SVM and FDA classifiers
when compared to its state-of-the-art counterparts [15], [16].
Furthermore, its self-tune manner reduces by far the time
complexity. Along these lines, in order to be consistent with
the literature, this work also investigates the performance of
the proposed unidimensional framework with a grid search of
parameters (GS-1DRQA). The range of embedding dimension
m and time delay τ is 1 to 8. In the case where both m and τ
are equal to 8, the phase space can not be constructed for small
proteins, hence no results are reported and the grid search
procedure is terminated. The optimal parameters are m = 7
and τ = 1, however, the overall accuracy remains roughly
unaltered for all the other combinations for both SVM and
FDA. As indicated in Table I the parameter selection based
on grid search achieves the highest accuracy that is though an
improvement on a quit small scale. However, it is extremely
time consuming and requires the utilization of the maximum
number of features.

Multidimensional RQA is employed as it processes the data
concurrently, exploits the intra- and inter-data correlations but
also produces half the number of features when compared to
the proposed unidimensional RQA scheme. It is remarkable
to notice that in comparison with the minimum number of
features reported in the state-of-the-art, namely 16, GmdRQA
utilizes only 10 features. The performance of GmdRQA is
initially evaluated using a grid search estimation of time delay
embedding parameters where m and τ are set equal for every
single protein. The optimal set of parameters is m = 5
and τ = 7, although, as mentioned previously for the GS-
1DRQA, the performance for both SVM and FDA classifiers is
consistent for all different pairs. The grid search setup remains
the same as in the GS-1DRQA scenario. The results indicate
that the efficiency of GS-GmdRQA remains unaffected as
time delay embedding parameter combinations differentiate.
Thereafter, DDFT-GmdRQA is examined. As given in Table I,
the overall classification accuracy does not provide particular
variation among most of the approaches. It is though worth
mentioning that DDFT-GmdRQA is the most efficient scheme
as it yields a high overall accuracy, utilizing the minimum
number of features that has been reported so far in the state-
of-the-art. Therefore, DDFT-GmdRQA not only reduces the
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Methods Number of
Features

Overall Accuracy
SVM

Overall Accuracy
FDA

Computational
Complexity (sec)

Yang et al. [15] CGR,RQA 16 - 0.6508 -
Yang et al. [16] PSIPRED, CGR, RQA 16 - 0.8140 -

This work PSIPRED, CGR, GS-1DRQA 20 0.8503 0.8489 25671.78
This work PSIPRED, CGR, GS-GmdRQA 10 0.8371 0.8409 13968.37
This work PSIPRED, CGR, DDFT-1DRQA 20 0.8369 0.8218 491.11
This work PSIPRED, CGR, DDFT-GmdRQA 10 0.8388 0.8360 262.89

TABLE I: Summarized predicted quality results for 25PDB dataset.

time complexity due to its automated parameter estimation,
but the memory complexity as well.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented three novel
self-tuned protein structure prediction architectures based on
the representation of secondary structure data in higher-
dimensional phase spaces using unidimensional and multi-
dimensional RQA for capturing the underlying dynamics of
the data. The experimental evaluation on real data revealed
the superiority of the DDFT-GmdRQA-based framework in
extracting and exploiting the underlying temporal dynamics
of the data generating processes, resulting in lower time and
memory complexity, when compared against the state-of-the-
art unidimensional RQA and the herein proposed DDFT-
1DRQA approach.

An extension of this work will consider to combine the
proposed DDFT-GmdRQA feature extraction framework with
other feature extraction schemes and evaluate the overall
prediction accuracy utilizing several classification algorithms
as well as feature selection techniques. Later, this work can be
further expanded by directly processing on the primary amino
acid protein sequence without employing intermediate tools
such as PSI-PRED and CGR.
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